nevanlinna/Nevanlinna/analyticOnNhd_divisor.lean

60 lines
1.4 KiB
Plaintext
Raw Normal View History

2024-10-07 07:56:42 +02:00
import Nevanlinna.analyticAt
2024-10-07 13:06:55 +02:00
import Nevanlinna.divisor
2024-10-07 07:56:42 +02:00
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def AnalyticOnNhd.zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
2024-10-07 13:06:55 +02:00
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.toNat : )
else
exact 0
supportInU := by
intro z hz
2024-10-31 16:59:22 +01:00
simp at hz
by_contra h₂z
simp [h₂z] at hz
2024-10-07 07:56:42 +02:00
2024-10-31 16:59:22 +01:00
locallyFiniteInU := by
intro z hz
2024-10-07 07:56:42 +02:00
2024-10-31 16:59:22 +01:00
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
2024-10-07 07:56:42 +02:00
2024-10-31 16:59:22 +01:00
rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
2024-10-07 07:56:42 +02:00
constructor
2024-10-31 16:59:22 +01:00
· intro y h₁y _
by_cases h₃y : y ∈ U
· simp [h₃y]
right
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhds_iff]
use N
· simp [h₃y]
· tauto
· rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
exact h₁N y h₁y h₂y
· simp [h₃y]
· tauto