nevanlinna/Nevanlinna/bilinear.lean

40 lines
817 B
Plaintext
Raw Normal View History

2024-06-26 12:28:39 +02:00
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Dual
import Mathlib.Analysis.InnerProductSpace.PiL2
open BigOperators
open Finset
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
open TensorProduct
example : 0 = 1 := by
let B := (sesqFormOfInner (𝕜 := ) (E := E)).flip
have e: E := by sorry
let C := B e
let α := InnerProductSpace.toDual E
let β : E →ₗ[] := by sorry
let YY := E ⊗[] E
let ZZ := TensorProduct.mapBilinear E E
let A : E × E → LinearMap.BilinForm E := by
unfold LinearMap.BilinForm
intro (e₁, e₂)
sorry
sorry