66 lines
2.6 KiB
Plaintext
66 lines
2.6 KiB
Plaintext
|
import Mathlib.Analysis.SpecialFunctions.Integrals
|
|||
|
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
|||
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
|||
|
import Mathlib.MeasureTheory.Measure.Restrict
|
|||
|
|
|||
|
open scoped Interval Topology
|
|||
|
open Real Filter MeasureTheory intervalIntegral
|
|||
|
|
|||
|
-- The following theorem was suggested by Gareth Ma on Zulip
|
|||
|
|
|||
|
|
|||
|
theorem logInt
|
|||
|
{t : ℝ}
|
|||
|
(ht : 0 < t) :
|
|||
|
∫ x in (0 : ℝ)..t, log x = t * log t - t := by
|
|||
|
rw [← integral_add_adjacent_intervals (b := 1)]
|
|||
|
trans (-1) + (t * log t - t + 1)
|
|||
|
· congr
|
|||
|
· -- ∫ x in 0..1, log x = -1, same proof as before
|
|||
|
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
|
|||
|
· simp
|
|||
|
· simp
|
|||
|
· intro x hx
|
|||
|
norm_num at hx
|
|||
|
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
|
|||
|
norm_num
|
|||
|
· rw [← neg_neg log]
|
|||
|
apply IntervalIntegrable.neg
|
|||
|
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
|||
|
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
|||
|
· intro x hx
|
|||
|
norm_num at hx
|
|||
|
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
|||
|
norm_num
|
|||
|
· intro x hx
|
|||
|
norm_num at hx
|
|||
|
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
|||
|
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
|||
|
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
|
|||
|
simp_rw [rpow_one, mul_comm] at this
|
|||
|
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
|
|||
|
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
|
|||
|
norm_num
|
|||
|
· rw [(by simp : -1 = 1 * log 1 - 1)]
|
|||
|
apply tendsto_nhdsWithin_of_tendsto_nhds
|
|||
|
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
|
|||
|
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
|
|||
|
rw [integral_log_of_pos zero_lt_one ht]
|
|||
|
norm_num
|
|||
|
· abel
|
|||
|
· -- log is integrable on [[0, 1]]
|
|||
|
rw [← neg_neg log]
|
|||
|
apply IntervalIntegrable.neg
|
|||
|
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
|||
|
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
|||
|
· intro x hx
|
|||
|
norm_num at hx
|
|||
|
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
|||
|
norm_num
|
|||
|
· intro x hx
|
|||
|
norm_num at hx
|
|||
|
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
|||
|
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
|||
|
· -- log is integrable on [[0, t]]
|
|||
|
simp [Set.mem_uIcc, ht]
|