nevanlinna/Nevanlinna/mathlibAddOn.lean

97 lines
2.5 KiB
Plaintext
Raw Normal View History

2024-10-09 12:13:22 +02:00
import Mathlib.Analysis.Analytic.Meromorphic
2024-07-31 09:40:35 +02:00
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
2024-11-06 15:33:48 +01:00
import Nevanlinna.analyticAt
2024-07-31 09:40:35 +02:00
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
variable {f f₀ f₁ g : E → F}
variable {f' f₀' f₁' g' : E →L[𝕜] F}
variable (e : E →L[𝕜] F)
variable {x : E}
variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
-- import Mathlib.Analysis.Calculus.FDeriv.Add
@[fun_prop]
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
Differentiable 𝕜 (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact Differentiable.const_smul h c
-- Mathlib.Analysis.Calculus.ContDiff.Basic
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
ContDiff 𝕜 n (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact ContDiff.const_smul c hf
2024-10-09 12:13:22 +02:00
2024-11-06 15:33:48 +01:00
open Topology Filter
lemma Mnhds
{α : Type}
{f g : α}
{z₀ : }
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
(h₂ : f z₀ = g z₀) :
f =ᶠ[𝓝 z₀] g := by
apply eventually_nhds_iff.2
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
use t
constructor
· intro y hy
by_cases h₂y : y ∈ ({z₀}ᶜ : Set )
· exact h₁t y hy h₂y
· simp at h₂y
rwa [h₂y]
· exact h₂t
2024-11-12 16:49:07 +01:00
-- unclear where this should go
lemma WithTopCoe
{n : WithTop } :
WithTop.map (Nat.cast : ) n = 0 → n = 0 := by
rcases n with h|h
· intro h
contradiction
· intro h₁
simp only [WithTop.map, Option.map] at h₁
have : (h : ) = 0 := by
exact WithTop.coe_eq_zero.mp h₁
have : h = 0 := by
exact Int.ofNat_eq_zero.mp this
rw [this]
rfl
2024-11-20 11:43:09 +01:00
lemma rwx
{a b : WithTop }
(ha : a ≠ )
(hb : b ≠ ) :
a + b ≠ := by
simp; tauto
lemma untop_add
{a b : WithTop }
(ha : a ≠ )
(hb : b ≠ ) :
(a + b).untop (rwx ha hb) = a.untop ha + (b.untop hb) := by
rw [WithTop.untop_eq_iff]
rw [WithTop.coe_add]
rw [WithTop.coe_untop]
rw [WithTop.coe_untop]