53 lines
2.1 KiB
Plaintext
53 lines
2.1 KiB
Plaintext
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|||
|
import Mathlib.Analysis.Complex.Basic
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticAt.order_mul
|
|||
|
{f₁ f₂ : ℂ → ℂ}
|
|||
|
{z₀ : ℂ}
|
|||
|
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
|||
|
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
|||
|
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
|||
|
by_cases h₂f₁ : hf₁.order = ⊤
|
|||
|
· simp [h₂f₁]
|
|||
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
|||
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
|||
|
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
|||
|
use t
|
|||
|
constructor
|
|||
|
· intro y hy
|
|||
|
rw [h₁t y hy]
|
|||
|
ring
|
|||
|
· exact ⟨h₂t, h₃t⟩
|
|||
|
· by_cases h₂f₂ : hf₂.order = ⊤
|
|||
|
· simp [h₂f₂]
|
|||
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
|||
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
|||
|
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
|||
|
use t
|
|||
|
constructor
|
|||
|
· intro y hy
|
|||
|
rw [h₁t y hy]
|
|||
|
ring
|
|||
|
· exact ⟨h₂t, h₃t⟩
|
|||
|
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
|||
|
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
|||
|
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
|||
|
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
|||
|
use g₁ * g₂
|
|||
|
constructor
|
|||
|
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
|||
|
· constructor
|
|||
|
· simp; tauto
|
|||
|
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
|||
|
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
|||
|
rw [eventually_nhds_iff]
|
|||
|
use t₁ ∩ t₂
|
|||
|
constructor
|
|||
|
· intro y hy
|
|||
|
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
|||
|
simp; ring
|
|||
|
· constructor
|
|||
|
· exact IsOpen.inter h₂t₁ h₂t₂
|
|||
|
· exact Set.mem_inter h₃t₁ h₃t₂
|