nevanlinna/Nevanlinna/complexHarmonic.lean

58 lines
1.7 KiB
Plaintext
Raw Normal View History

2024-05-03 15:54:51 +02:00
import Mathlib.Data.Fin.Tuple.Basic
2024-04-30 08:20:57 +02:00
import Mathlib.Analysis.Complex.Basic
2024-05-02 09:48:26 +02:00
import Mathlib.Analysis.Complex.TaylorSeries
2024-04-30 08:20:57 +02:00
import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Calculus.FDeriv.Basic
2024-05-02 21:09:38 +02:00
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
2024-04-30 08:20:57 +02:00
import Nevanlinna.cauchyRiemann
2024-05-07 09:49:56 +02:00
import Nevanlinna.partialDeriv
2024-05-07 07:08:23 +02:00
2024-04-30 08:20:57 +02:00
2024-05-07 07:08:23 +02:00
noncomputable def Complex.laplace : () → () := by
intro f
let fx := Real.partialDeriv 1 f
let fxx := Real.partialDeriv 1 fx
2024-05-07 09:49:56 +02:00
let fy := Real.partialDeriv Complex.I f
2024-05-07 07:08:23 +02:00
let fyy := Real.partialDeriv Complex.I fy
exact fxx + fyy
2024-04-30 08:20:57 +02:00
2024-05-02 21:09:38 +02:00
def Harmonic (f : ) : Prop :=
2024-04-30 08:20:57 +02:00
(ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0)
2024-05-03 12:23:09 +02:00
2024-05-06 17:01:10 +02:00
theorem holomorphic_is_harmonic {f : } (h : Differentiable f) :
Harmonic f := by
-- f is real C²
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h)
2024-05-07 09:49:56 +02:00
have fI_is_real_differentiable : Differentiable (Real.partialDeriv 1 f) := by
2024-05-07 10:16:23 +02:00
exact (partialDeriv_contDiff f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
2024-04-30 08:20:57 +02:00
constructor
2024-05-06 09:01:43 +02:00
· -- f is two times real continuously differentiable
2024-05-06 17:01:10 +02:00
exact f_is_real_C2
2024-04-30 08:20:57 +02:00
· -- Laplace of f is zero
unfold Complex.laplace
2024-05-07 07:08:23 +02:00
rw [CauchyRiemann₄ h]
2024-05-08 07:15:34 +02:00
let l : →L[] := by
--
sorry --(fun x ↦ Complex.I • x)
have : (Complex.I • Real.partialDeriv 1 f) = (l ∘ (Real.partialDeriv 1 f)) := by
sorry
rw [this]
rw [partialDeriv_compContLin]
--rw [partialDeriv_smul₂ fI_is_real_differentiable]
2024-05-07 10:16:23 +02:00
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
rw [CauchyRiemann₄ h]
2024-05-07 16:50:57 +02:00
rw [partialDeriv_smul₂ fI_is_real_differentiable]
2024-05-07 10:16:23 +02:00
rw [← smul_assoc]
2024-05-02 21:09:38 +02:00
simp