2024-05-03 15:54:51 +02:00
|
|
|
|
import Mathlib.Data.Fin.Tuple.Basic
|
2024-04-30 08:20:57 +02:00
|
|
|
|
import Mathlib.Analysis.Complex.Basic
|
2024-05-02 09:48:26 +02:00
|
|
|
|
import Mathlib.Analysis.Complex.TaylorSeries
|
2024-04-30 08:20:57 +02:00
|
|
|
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
|
|
|
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
|
|
|
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
2024-05-02 21:09:38 +02:00
|
|
|
|
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
2024-04-30 08:20:57 +02:00
|
|
|
|
import Nevanlinna.cauchyRiemann
|
2024-05-07 09:49:56 +02:00
|
|
|
|
import Nevanlinna.partialDeriv
|
2024-05-07 07:08:23 +02:00
|
|
|
|
|
2024-04-30 08:20:57 +02:00
|
|
|
|
|
2024-05-07 07:08:23 +02:00
|
|
|
|
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
|
|
|
|
intro f
|
|
|
|
|
let fx := Real.partialDeriv 1 f
|
|
|
|
|
let fxx := Real.partialDeriv 1 fx
|
2024-05-07 09:49:56 +02:00
|
|
|
|
let fy := Real.partialDeriv Complex.I f
|
2024-05-07 07:08:23 +02:00
|
|
|
|
let fyy := Real.partialDeriv Complex.I fy
|
|
|
|
|
exact fxx + fyy
|
2024-04-30 08:20:57 +02:00
|
|
|
|
|
2024-05-02 21:09:38 +02:00
|
|
|
|
|
|
|
|
|
def Harmonic (f : ℂ → ℂ) : Prop :=
|
2024-04-30 08:20:57 +02:00
|
|
|
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
|
|
|
|
|
2024-05-03 12:23:09 +02:00
|
|
|
|
|
2024-05-06 17:01:10 +02:00
|
|
|
|
theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|
|
|
|
Harmonic f := by
|
|
|
|
|
|
|
|
|
|
-- f is real C²
|
|
|
|
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
|
|
|
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
|
|
|
|
2024-05-07 09:49:56 +02:00
|
|
|
|
have fI_is_real_differentiable : Differentiable ℝ (Real.partialDeriv 1 f) := by
|
2024-05-07 10:16:23 +02:00
|
|
|
|
exact (partialDeriv_contDiff f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
2024-04-30 08:20:57 +02:00
|
|
|
|
|
|
|
|
|
constructor
|
2024-05-06 09:01:43 +02:00
|
|
|
|
· -- f is two times real continuously differentiable
|
2024-05-06 17:01:10 +02:00
|
|
|
|
exact f_is_real_C2
|
2024-04-30 08:20:57 +02:00
|
|
|
|
|
|
|
|
|
· -- Laplace of f is zero
|
|
|
|
|
unfold Complex.laplace
|
2024-05-07 07:08:23 +02:00
|
|
|
|
rw [CauchyRiemann₄ h]
|
2024-05-08 07:15:34 +02:00
|
|
|
|
|
|
|
|
|
let l : ℂ →L[ℝ] ℂ := by
|
|
|
|
|
--
|
|
|
|
|
sorry --(fun x ↦ Complex.I • x)
|
|
|
|
|
have : (Complex.I • Real.partialDeriv 1 f) = (l ∘ (Real.partialDeriv 1 f)) := by
|
|
|
|
|
sorry
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [partialDeriv_compContLin]
|
|
|
|
|
|
|
|
|
|
--rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
|
|
|
|
|
2024-05-07 10:16:23 +02:00
|
|
|
|
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
|
|
|
|
rw [CauchyRiemann₄ h]
|
2024-05-07 16:50:57 +02:00
|
|
|
|
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
2024-05-07 10:16:23 +02:00
|
|
|
|
rw [← smul_assoc]
|
2024-05-02 21:09:38 +02:00
|
|
|
|
simp
|