2024-08-12 13:05:55 +02:00
|
|
|
|
import Mathlib.Analysis.Complex.CauchyIntegral
|
2024-08-21 17:04:45 +02:00
|
|
|
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|
|
|
|
import Nevanlinna.analyticOn_zeroSet
|
2024-08-12 13:05:55 +02:00
|
|
|
|
import Nevanlinna.harmonicAt_examples
|
|
|
|
|
import Nevanlinna.harmonicAt_meanValue
|
2024-08-22 13:09:03 +02:00
|
|
|
|
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
2024-08-12 13:05:55 +02:00
|
|
|
|
|
2024-08-21 17:04:45 +02:00
|
|
|
|
open Real
|
|
|
|
|
|
|
|
|
|
|
2024-08-22 14:52:52 +02:00
|
|
|
|
noncomputable def Zeroset
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{s : Set ℂ}
|
|
|
|
|
(hf : ∀ z ∈ s, HolomorphicAt f z) :
|
|
|
|
|
Set ℂ := by
|
|
|
|
|
exact f⁻¹' {0} ∩ s
|
|
|
|
|
|
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
noncomputable def ZeroFinset
|
2024-08-21 17:04:45 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
2024-08-22 14:21:14 +02:00
|
|
|
|
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
|
|
|
(h₂f : f 0 ≠ 0) :
|
2024-08-21 17:04:45 +02:00
|
|
|
|
Finset ℂ := by
|
|
|
|
|
|
|
|
|
|
let Z := f⁻¹' {0} ∩ Metric.closedBall (0 : ℂ) 1
|
2024-08-22 14:21:14 +02:00
|
|
|
|
have hZ : Set.Finite Z := by
|
|
|
|
|
dsimp [Z]
|
|
|
|
|
rw [Set.inter_comm]
|
|
|
|
|
apply finiteZeros
|
|
|
|
|
-- Ball is preconnected
|
|
|
|
|
apply IsConnected.isPreconnected
|
|
|
|
|
apply Convex.isConnected
|
|
|
|
|
exact convex_closedBall 0 1
|
|
|
|
|
exact Set.nonempty_of_nonempty_subtype
|
|
|
|
|
--
|
|
|
|
|
exact isCompact_closedBall 0 1
|
|
|
|
|
--
|
|
|
|
|
intro x hx
|
|
|
|
|
have A := (h₁f x hx)
|
|
|
|
|
let B := HolomorphicAt_iff.1 A
|
|
|
|
|
obtain ⟨s, h₁s, h₂s, h₃s⟩ := B
|
|
|
|
|
apply DifferentiableOn.analyticAt (s := s)
|
|
|
|
|
intro z hz
|
|
|
|
|
apply DifferentiableAt.differentiableWithinAt
|
|
|
|
|
apply h₃s
|
|
|
|
|
exact hz
|
|
|
|
|
exact IsOpen.mem_nhds h₁s h₂s
|
|
|
|
|
--
|
|
|
|
|
use 0
|
|
|
|
|
constructor
|
|
|
|
|
· simp
|
|
|
|
|
· exact h₂f
|
2024-08-21 17:04:45 +02:00
|
|
|
|
exact hZ.toFinset
|
2024-08-12 13:05:55 +02:00
|
|
|
|
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
lemma ZeroFinset_mem_iff
|
2024-08-12 13:05:55 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
2024-08-22 14:21:14 +02:00
|
|
|
|
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
|
|
|
{h₂f : f 0 ≠ 0}
|
|
|
|
|
(z : ℂ) :
|
|
|
|
|
z ∈ ↑(ZeroFinset h₁f h₂f) ↔ z ∈ Metric.closedBall 0 1 ∧ f z = 0 := by
|
|
|
|
|
dsimp [ZeroFinset]; simp
|
|
|
|
|
tauto
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
2024-08-12 16:26:20 +02:00
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
noncomputable def order
|
2024-08-21 17:04:45 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
2024-08-22 14:21:14 +02:00
|
|
|
|
{h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z}
|
|
|
|
|
{h₂f : f 0 ≠ 0} :
|
|
|
|
|
ZeroFinset h₁f h₂f → ℕ := by
|
|
|
|
|
intro i
|
|
|
|
|
let A := ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
|
|
|
|
let B := (h₁f i.1 A).analyticAt
|
|
|
|
|
exact B.order.toNat
|
|
|
|
|
|
2024-08-12 13:05:55 +02:00
|
|
|
|
|
2024-08-21 17:04:45 +02:00
|
|
|
|
theorem jensen_case_R_eq_one
|
2024-08-12 13:05:55 +02:00
|
|
|
|
(f : ℂ → ℂ)
|
2024-08-21 17:04:45 +02:00
|
|
|
|
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
|
|
|
(h'₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, AnalyticAt ℂ f z)
|
|
|
|
|
(h₂f : f 0 ≠ 0) :
|
2024-08-22 14:21:14 +02:00
|
|
|
|
log ‖f 0‖ = -∑ s : (ZeroFinset h₁f h₂f), order s * log (‖s.1‖⁻¹) + (2 * π )⁻¹ * ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ := by
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
|
|
|
|
have F : ℂ → ℂ := by sorry
|
|
|
|
|
have h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by sorry
|
|
|
|
|
have h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0 := by sorry
|
2024-08-22 14:21:14 +02:00
|
|
|
|
have h₃F : f = fun z ↦ (F z) * ∏ s : ZeroFinset h₁f h₂f, (z - s) ^ (order s) := by sorry
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
let G := fun z ↦ log ‖F z‖ + ∑ s : ZeroFinset h₁f h₂f, (order s) * log ‖z - s‖
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
|
|
|
|
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
|
|
|
|
intro z h₁z h₂z
|
|
|
|
|
|
|
|
|
|
conv =>
|
|
|
|
|
left
|
|
|
|
|
arg 1
|
|
|
|
|
rw [h₃F]
|
|
|
|
|
rw [norm_mul]
|
|
|
|
|
rw [norm_prod]
|
|
|
|
|
right
|
|
|
|
|
arg 2
|
|
|
|
|
intro b
|
|
|
|
|
rw [norm_pow]
|
|
|
|
|
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
|
|
|
|
|
rw [Real.log_mul]
|
|
|
|
|
rw [Real.log_prod]
|
|
|
|
|
conv =>
|
|
|
|
|
left
|
|
|
|
|
right
|
|
|
|
|
arg 2
|
|
|
|
|
intro s
|
|
|
|
|
rw [Real.log_pow]
|
|
|
|
|
dsimp [G]
|
|
|
|
|
|
|
|
|
|
-- ∀ x ∈ (ZeroFinset h₁f).attach, Complex.abs (z - ↑x) ^ order x ≠ 0
|
|
|
|
|
simp
|
|
|
|
|
intro s hs
|
|
|
|
|
rw [ZeroFinset_mem_iff h₁f s] at hs
|
|
|
|
|
rw [← hs.2] at h₂z
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
-- Complex.abs (F z) ≠ 0
|
|
|
|
|
simp
|
|
|
|
|
exact h₂F z h₁z
|
|
|
|
|
|
|
|
|
|
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
|
|
|
|
by_contra C
|
|
|
|
|
obtain ⟨s, h₁s, h₂s⟩ := Finset.prod_eq_zero_iff.1 C
|
|
|
|
|
simp at h₂s
|
|
|
|
|
rw [← ((ZeroFinset_mem_iff h₁f s).1 (Finset.coe_mem s)).2, h₂s.1] at h₂z
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
2024-08-22 13:09:03 +02:00
|
|
|
|
|
2024-08-21 17:04:45 +02:00
|
|
|
|
rw [intervalIntegral.integral_congr_ae]
|
|
|
|
|
rw [MeasureTheory.ae_iff]
|
|
|
|
|
apply Set.Countable.measure_zero
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
|
|
|
|
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
|
|
|
|
|
intro a ha
|
|
|
|
|
simp at ha
|
|
|
|
|
simp
|
|
|
|
|
by_contra C
|
|
|
|
|
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := by
|
|
|
|
|
sorry
|
|
|
|
|
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
|
|
|
|
|
|
|
|
|
apply Set.Countable.mono t₀
|
|
|
|
|
apply Set.Countable.preimage_circleMap
|
|
|
|
|
apply Set.Finite.countable
|
|
|
|
|
apply finiteZeros
|
|
|
|
|
|
|
|
|
|
-- IsPreconnected (Metric.closedBall (0 : ℂ) 1)
|
|
|
|
|
apply IsConnected.isPreconnected
|
|
|
|
|
apply Convex.isConnected
|
|
|
|
|
exact convex_closedBall 0 1
|
|
|
|
|
exact Set.nonempty_of_nonempty_subtype
|
|
|
|
|
--
|
|
|
|
|
exact isCompact_closedBall 0 1
|
|
|
|
|
--
|
|
|
|
|
exact h'₁f
|
|
|
|
|
use 0
|
|
|
|
|
exact ⟨Metric.mem_closedBall_self (zero_le_one' ℝ), h₂f⟩
|
|
|
|
|
exact Ne.symm (zero_ne_one' ℝ)
|
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f h₂f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
2024-08-21 17:04:45 +02:00
|
|
|
|
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
|
|
|
|
sorry
|
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) + ∑ x ∈ (ZeroFinset h₁f h₂f).attach, ↑(order x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
2024-08-21 17:04:45 +02:00
|
|
|
|
dsimp [G]
|
|
|
|
|
rw [intervalIntegral.integral_add]
|
|
|
|
|
rw [intervalIntegral.integral_finset_sum]
|
|
|
|
|
simp_rw [intervalIntegral.integral_const_mul]
|
|
|
|
|
|
|
|
|
|
-- ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => ↑(order i) *
|
|
|
|
|
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
|
|
|
|
intro i hi
|
|
|
|
|
apply IntervalIntegrable.const_mul
|
2024-08-22 13:09:03 +02:00
|
|
|
|
have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := by exact ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
|
|
|
|
simp at this
|
|
|
|
|
by_cases h₂i : ‖i.1‖ = 1
|
|
|
|
|
-- case pos
|
|
|
|
|
exact int'₂ h₂i
|
|
|
|
|
-- case neg
|
|
|
|
|
have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
|
|
|
|
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
|
|
|
|
apply Continuous.intervalIntegrable
|
|
|
|
|
apply continuous_iff_continuousAt.2
|
|
|
|
|
intro x
|
|
|
|
|
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
|
|
|
|
rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply Real.continuousAt_log
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
by_contra ha'
|
2024-08-22 13:09:03 +02:00
|
|
|
|
conv at h₂i =>
|
|
|
|
|
arg 1
|
|
|
|
|
rw [← ha']
|
|
|
|
|
rw [Complex.norm_eq_abs]
|
|
|
|
|
rw [abs_circleMap_zero 1 x]
|
|
|
|
|
simp
|
|
|
|
|
tauto
|
2024-08-21 17:04:45 +02:00
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply Complex.continuous_abs.continuousAt
|
|
|
|
|
fun_prop
|
2024-08-22 13:09:03 +02:00
|
|
|
|
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
|
|
|
|
|
apply Continuous.intervalIntegrable
|
|
|
|
|
apply continuous_iff_continuousAt.2
|
|
|
|
|
intro x
|
|
|
|
|
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
|
|
|
|
|
rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply Real.continuousAt_log
|
|
|
|
|
simp [h₂F]
|
|
|
|
|
--
|
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply Complex.continuous_abs.continuousAt
|
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply DifferentiableAt.continuousAt (𝕜 := ℂ )
|
|
|
|
|
apply HolomorphicAt.differentiableAt
|
|
|
|
|
simp [h₁F]
|
|
|
|
|
--
|
|
|
|
|
apply Continuous.continuousAt
|
|
|
|
|
apply continuous_circleMap
|
|
|
|
|
--
|
2024-08-22 14:21:14 +02:00
|
|
|
|
have : (fun x => ∑ s ∈ (ZeroFinset h₁f h₂f).attach, ↑(order s) * log (Complex.abs (circleMap 0 1 x - ↑s)))
|
|
|
|
|
= ∑ s ∈ (ZeroFinset h₁f h₂f).attach, (fun x => ↑(order s) * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
|
2024-08-22 13:09:03 +02:00
|
|
|
|
funext x
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
|
|
|
|
apply IntervalIntegrable.sum
|
|
|
|
|
intro i h₂i
|
|
|
|
|
apply IntervalIntegrable.const_mul
|
|
|
|
|
have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := by exact ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
|
|
|
|
simp at this
|
|
|
|
|
by_cases h₂i : ‖i.1‖ = 1
|
|
|
|
|
-- case pos
|
|
|
|
|
exact int'₂ h₂i
|
|
|
|
|
-- case neg
|
|
|
|
|
have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
|
|
|
|
apply Continuous.intervalIntegrable
|
|
|
|
|
apply continuous_iff_continuousAt.2
|
|
|
|
|
intro x
|
|
|
|
|
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
|
|
|
|
rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply Real.continuousAt_log
|
|
|
|
|
simp
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
2024-08-22 13:09:03 +02:00
|
|
|
|
by_contra ha'
|
|
|
|
|
conv at h₂i =>
|
|
|
|
|
arg 1
|
|
|
|
|
rw [← ha']
|
|
|
|
|
rw [Complex.norm_eq_abs]
|
|
|
|
|
rw [abs_circleMap_zero 1 x]
|
|
|
|
|
simp
|
|
|
|
|
tauto
|
|
|
|
|
apply ContinuousAt.comp
|
|
|
|
|
apply Complex.continuous_abs.continuousAt
|
|
|
|
|
fun_prop
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
2024-08-22 14:21:14 +02:00
|
|
|
|
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
|
|
|
|
|
let logAbsF := fun w ↦ Real.log ‖F w‖
|
|
|
|
|
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
|
|
|
|
intro z hz
|
|
|
|
|
apply logabs_of_holomorphicAt_is_harmonic
|
|
|
|
|
apply h₁F z hz
|
|
|
|
|
exact h₂F z hz
|
|
|
|
|
|
|
|
|
|
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
|
|
|
|
simp_rw [← Complex.norm_eq_abs] at this
|
|
|
|
|
rw [t₁] at this
|
|
|
|
|
|
2024-08-22 14:52:52 +02:00
|
|
|
|
--let Z₁ := (ZeroFinset h₁f h₂f) ∩ (Metric.ball 0 1)
|
2024-08-22 14:21:14 +02:00
|
|
|
|
|
2024-08-22 14:52:52 +02:00
|
|
|
|
let Z₂ := { x : ZeroFinset h₁f h₂f | ‖x.1‖ = 1 }
|
2024-08-22 14:21:14 +02:00
|
|
|
|
|
2024-08-21 17:04:45 +02:00
|
|
|
|
|
2024-08-12 13:05:55 +02:00
|
|
|
|
sorry
|