2024-10-31 17:09:09 +01:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
import Nevanlinna.divisor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
2024-11-04 13:22:12 +01:00
|
|
|
|
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
|
|
|
|
|
|
|
|
|
obtain ⟨n, h⟩ := hf
|
|
|
|
|
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
rcases A with h₁|h₂
|
|
|
|
|
· rw [eventually_nhds_iff] at h₁
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
|
|
|
|
left
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
let A := h₁N y h₁y
|
|
|
|
|
simp at A
|
|
|
|
|
rcases A with h₃|h₄
|
|
|
|
|
· let B := h₃.1
|
|
|
|
|
simp at h₂y
|
|
|
|
|
let C := sub_eq_zero.1 B
|
|
|
|
|
tauto
|
|
|
|
|
· assumption
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂N
|
|
|
|
|
· exact h₃N
|
|
|
|
|
· right
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
rw [eventually_nhdsWithin_iff] at h₂
|
|
|
|
|
rw [eventually_nhds_iff] at h₂
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
by_contra h
|
|
|
|
|
let A := h₁N y h₁y h₂y
|
|
|
|
|
rw [h] at A
|
|
|
|
|
simp at A
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂N
|
|
|
|
|
· exact h₃N
|
|
|
|
|
|
2024-10-31 17:09:09 +01:00
|
|
|
|
|
|
|
|
|
noncomputable def MeromorphicOn.divisor
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(hf : MeromorphicOn f U) :
|
|
|
|
|
Divisor U where
|
|
|
|
|
|
|
|
|
|
toFun := by
|
|
|
|
|
intro z
|
|
|
|
|
if hz : z ∈ U then
|
|
|
|
|
exact ((hf z hz).order.untop' 0 : ℤ)
|
|
|
|
|
else
|
|
|
|
|
exact 0
|
|
|
|
|
|
|
|
|
|
supportInU := by
|
|
|
|
|
intro z hz
|
|
|
|
|
simp at hz
|
|
|
|
|
by_contra h₂z
|
|
|
|
|
simp [h₂z] at hz
|
|
|
|
|
|
|
|
|
|
locallyFiniteInU := by
|
|
|
|
|
intro z hz
|
|
|
|
|
|
|
|
|
|
apply eventually_nhdsWithin_iff.2
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
|
2024-11-04 13:22:12 +01:00
|
|
|
|
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
|
|
|
|
|
· rw [eventually_nhdsWithin_iff] at h
|
|
|
|
|
rw [eventually_nhds_iff] at h
|
2024-10-31 17:09:09 +01:00
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
2024-11-04 13:22:12 +01:00
|
|
|
|
· intro y h₁y h₂y
|
2024-10-31 17:09:09 +01:00
|
|
|
|
by_cases h₃y : y ∈ U
|
|
|
|
|
· simp [h₃y]
|
|
|
|
|
right
|
2024-11-04 13:22:12 +01:00
|
|
|
|
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
2024-10-31 17:09:09 +01:00
|
|
|
|
rw [eventually_nhds_iff]
|
2024-11-04 13:22:12 +01:00
|
|
|
|
use N ∩ {z}ᶜ
|
|
|
|
|
constructor
|
|
|
|
|
· intro x h₁x _
|
|
|
|
|
exact h₁N x h₁x.1 h₁x.2
|
|
|
|
|
· constructor
|
|
|
|
|
· exact IsOpen.inter h₂N isOpen_compl_singleton
|
|
|
|
|
· exact Set.mem_inter h₁y h₂y
|
2024-10-31 17:09:09 +01:00
|
|
|
|
· simp [h₃y]
|
|
|
|
|
· tauto
|
|
|
|
|
|
2024-11-04 13:22:12 +01:00
|
|
|
|
· let A := (hf z hz).eventually_analyticAt
|
|
|
|
|
let B := Filter.eventually_and.2 ⟨h, A⟩
|
|
|
|
|
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
|
2024-10-31 17:09:09 +01:00
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
by_cases h₃y : y ∈ U
|
|
|
|
|
· simp [h₃y]
|
|
|
|
|
left
|
2024-11-04 13:22:12 +01:00
|
|
|
|
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
|
|
|
|
|
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
|
|
|
|
|
let C := (h₁N y h₁y h₂y).1
|
|
|
|
|
let E := D C
|
|
|
|
|
rw [E]
|
|
|
|
|
simp
|
2024-10-31 17:09:09 +01:00
|
|
|
|
· simp [h₃y]
|
|
|
|
|
· tauto
|