36 lines
1.2 KiB
Plaintext
36 lines
1.2 KiB
Plaintext
|
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
|||
|
import Mathlib.Analysis.Calculus.FDeriv.Add
|
|||
|
|
|||
|
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
|||
|
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
|||
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
|||
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
|||
|
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
|
|||
|
variable {f f₀ f₁ g : E → F}
|
|||
|
variable {f' f₀' f₁' g' : E →L[𝕜] F}
|
|||
|
variable (e : E →L[𝕜] F)
|
|||
|
variable {x : E}
|
|||
|
variable {s t : Set E}
|
|||
|
variable {L L₁ L₂ : Filter E}
|
|||
|
|
|||
|
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
|
|||
|
|
|||
|
|
|||
|
-- import Mathlib.Analysis.Calculus.FDeriv.Add
|
|||
|
|
|||
|
@[fun_prop]
|
|||
|
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
|
|||
|
Differentiable 𝕜 (c • f) := by
|
|||
|
have : c • f = fun x ↦ c • f x := rfl
|
|||
|
rw [this]
|
|||
|
exact Differentiable.const_smul h c
|
|||
|
|
|||
|
|
|||
|
-- Mathlib.Analysis.Calculus.ContDiff.Basic
|
|||
|
|
|||
|
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
|
|||
|
ContDiff 𝕜 n (c • f) := by
|
|||
|
have : c • f = fun x ↦ c • f x := rfl
|
|||
|
rw [this]
|
|||
|
exact ContDiff.const_smul c hf
|