nevanlinna/Nevanlinna/harmonicAt.examples.lean

212 lines
6.8 KiB
Plaintext
Raw Normal View History

2024-06-11 13:28:02 +02:00
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
import Nevanlinna.complexHarmonic
import Nevanlinna.holomorphicAt
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F] [CompleteSpace F]
theorem holomorphicAt_is_harmonicAt
{f : → F}
{z : }
(hf : HolomorphicAt f z) :
HarmonicAt f z := by
let t := {x | HolomorphicAt f x}
have ht : IsOpen t := HolomorphicAt_isOpen f
have hz : z ∈ t := by exact hf
constructor
· -- ContDiffAt 2 f z
exact hf.contDiffAt
· -- Δ f =ᶠ[nhds z] 0
apply Filter.eventuallyEq_iff_exists_mem.2
use t
constructor
· exact IsOpen.mem_nhds ht hz
· intro w hw
unfold Complex.laplace
simp
rw [partialDeriv_eventuallyEq hw.CauchyRiemannAt Complex.I]
rw [partialDeriv_smul'₂]
simp
rw [partialDeriv_commAt hw.contDiffAt Complex.I 1]
rw [partialDeriv_eventuallyEq hw.CauchyRiemannAt 1]
rw [partialDeriv_smul'₂]
simp
rw [← smul_assoc]
simp
theorem re_of_holomorphicAt_is_harmonicAr
{f : }
{z : }
(h : HolomorphicAt f z) :
HarmonicAt (Complex.reCLM ∘ f) z := by
apply harmonicAt_comp_CLM_is_harmonicAt
exact holomorphicAt_is_harmonicAt h
theorem im_of_holomorphicAt_is_harmonicAt
{f : }
{z : }
(h : HolomorphicAt f z) :
HarmonicAt (Complex.imCLM ∘ f) z := by
apply harmonicAt_comp_CLM_is_harmonicAt
exact holomorphicAt_is_harmonicAt h
theorem antiholomorphicAt_is_harmonicAt
{f : }
{z : }
(h : HolomorphicAt f z) :
HarmonicAt (Complex.conjCLE ∘ f) z := by
apply harmonicAt_iff_comp_CLE_is_harmonicAt.1
exact holomorphicAt_is_harmonicAt h
theorem log_normSq_of_holomorphicAt_is_harmonicAt
{f : }
{z : }
(h₁f : HolomorphicAt f z)
(h₂f : f z ≠ 0) :
HarmonicAt (Real.log ∘ Complex.normSq ∘ f) z := by
-- For later use
have slitPlaneLemma {z : } (hz : z ≠ 0) : z ∈ Complex.slitPlane -z ∈ Complex.slitPlane := by
rw [Complex.mem_slitPlane_iff, Complex.mem_slitPlane_iff]
simp at hz
rw [Complex.ext_iff] at hz
push_neg at hz
simp at hz
simp
by_contra contra
push_neg at contra
exact hz (le_antisymm contra.1.1 contra.2.1) contra.1.2
-- First prove the theorem for functions with image in the slitPlane
have lem₁ : ∀ g : , (HolomorphicAt g z) → (g z ≠ 0) → (g z ∈ Complex.slitPlane) → HarmonicAt (Real.log ∘ Complex.normSq ∘ g) z := by
intro g h₁g h₂g h₃g
-- Rewrite the log |g|² as Complex.log (g * gc)
suffices hyp : HarmonicAt (Complex.log ∘ ((Complex.conjCLE ∘ g) * g)) z from by
have : Real.log ∘ Complex.normSq ∘ g = Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ g := by
funext x
simp
rw [this]
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ g = Complex.log ∘ ((Complex.conjCLE ∘ g) * g) := by
funext x
simp
rw [Complex.ofReal_log]
rw [Complex.normSq_eq_conj_mul_self]
exact Complex.normSq_nonneg (g x)
rw [← this] at hyp
apply harmonicAt_comp_CLM_is_harmonicAt hyp
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
-- This uses the assumption that g z is in Complex.slitPlane
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.log ∘ Complex.conjCLE ∘ g + Complex.log ∘ g) := by
apply Filter.eventuallyEq_iff_exists_mem.2
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
constructor
· apply ContinuousAt.preimage_mem_nhds
· exact h₁g.differentiableAt.continuousAt
· apply IsOpen.mem_nhds
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
constructor
· exact h₃g
· exact h₂g
· intro x hx
simp
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
rw [Complex.arg_conj]
simp [Complex.slitPlane_arg_ne_pi hx.1]
constructor
· exact Real.pi_pos
· exact Real.pi_nonneg
simp
apply hx.2
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
-- This uses the assumption that g z is in Complex.slitPlane
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.conjCLE ∘ Complex.log ∘ g + Complex.log ∘ g) := by
apply Filter.eventuallyEq_iff_exists_mem.2
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
constructor
· apply ContinuousAt.preimage_mem_nhds
· exact h₁g.differentiableAt.continuousAt
· apply IsOpen.mem_nhds
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
constructor
· exact h₃g
· exact h₂g
· intro x hx
simp
rw [← Complex.log_conj]
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
rw [Complex.arg_conj]
simp [Complex.slitPlane_arg_ne_pi hx.1]
constructor
· exact Real.pi_pos
· exact Real.pi_nonneg
simp
apply hx.2
apply Complex.slitPlane_arg_ne_pi hx.1
rw [HarmonicAt_eventuallyEq this]
apply harmonicAt_add_harmonicAt_is_harmonicAt
· rw [← harmonicAt_iff_comp_CLE_is_harmonicAt]
apply holomorphicAt_is_harmonicAt
apply HolomorphicAt_comp
use Complex.slitPlane
constructor
· apply IsOpen.mem_nhds
exact Complex.isOpen_slitPlane
assumption
· exact fun z a => Complex.differentiableAt_log a
exact h₁g
· apply holomorphicAt_is_harmonicAt
apply HolomorphicAt_comp
use Complex.slitPlane
constructor
· apply IsOpen.mem_nhds
exact Complex.isOpen_slitPlane
assumption
· exact fun z a => Complex.differentiableAt_log a
exact h₁g
by_cases h₃f : f z ∈ Complex.slitPlane
· exact lem₁ f h₁f h₂f h₃f
· have : Complex.normSq ∘ f = Complex.normSq ∘ (-f) := by funext; simp
rw [this]
apply lem₁ (-f)
· exact HolomorphicAt_neg h₁f
· simpa
· exact (slitPlaneLemma h₂f).resolve_left h₃f
theorem logabs_of_holomorphicAt_is_harmonic
{f : }
{z : }
(h₁f : HolomorphicAt f z)
(h₂f : f z ≠ 0) :
HarmonicAt (fun w ↦ Real.log ‖f w‖) z := by
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
funext z
simp
unfold Complex.abs
simp
rw [Real.log_sqrt]
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
exact Complex.normSq_nonneg (f z)
rw [this]
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
apply (harmonicAt_iff_smul_const_is_harmonicAt (inv_ne_zero two_ne_zero)).1
exact log_normSq_of_holomorphicAt_is_harmonicAt h₁f h₂f