2024-07-03 11:17:47 +02:00
|
|
|
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open RCLike Real Filter
|
|
|
|
|
open Topology ComplexConjugate
|
|
|
|
|
open LinearMap (BilinForm)
|
|
|
|
|
open TensorProduct
|
|
|
|
|
open InnerProductSpace
|
|
|
|
|
open Inner
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example
|
|
|
|
|
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E]
|
|
|
|
|
{F : Type*} [NormedAddCommGroup F] [InnerProductSpace ℝ F]
|
|
|
|
|
: 1 = 0 := by
|
|
|
|
|
|
|
|
|
|
let e : E →ₗ[ℝ] E →ₗ[ℝ] ℝ := innerₗ E
|
|
|
|
|
let f : F →ₗ[ℝ] F →ₗ[ℝ] ℝ := innerₗ F
|
|
|
|
|
let e₂ := TensorProduct.map₂ e f
|
|
|
|
|
let l := TensorProduct.lid ℝ ℝ
|
|
|
|
|
|
|
|
|
|
have : ∀ e1 e2 : E, ∀ f1 f2 : F, e₂ (e1 ⊗ f1) (e2 ⊗ f2) =
|
|
|
|
|
|
|
|
|
|
let X : InnerProductSpace.Core ℝ (E ⊗[ℝ] F) := {
|
|
|
|
|
inner := by
|
|
|
|
|
intro a b
|
|
|
|
|
exact TensorProduct.lid ℝ ℝ ((TensorProduct.map₂ (innerₗ E) (innerₗ F)) a b)
|
|
|
|
|
conj_symm := by
|
|
|
|
|
simp
|
|
|
|
|
intro x y
|
|
|
|
|
|
|
|
|
|
unfold innerₗ
|
|
|
|
|
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
nonneg_re := _
|
|
|
|
|
definite := _
|
|
|
|
|
add_left := _
|
|
|
|
|
smul_left := _
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let inner : E ⊗[𝕜] E → E ⊗[𝕜] E → 𝕜 :=
|
|
|
|
|
--let x := TensorProduct.lift
|
|
|
|
|
--E.inner
|
|
|
|
|
--TensorProduct.map₂
|
|
|
|
|
sorry
|
|
|
|
|
sorry
|