2024-08-12 13:05:55 +02:00
|
|
|
|
import Mathlib.Analysis.Complex.CauchyIntegral
|
|
|
|
|
import Nevanlinna.harmonicAt_examples
|
|
|
|
|
import Nevanlinna.harmonicAt_meanValue
|
|
|
|
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma xx
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{S : Set ℂ}
|
2024-08-12 16:26:20 +02:00
|
|
|
|
(h₁S : IsPreconnected S)
|
|
|
|
|
(h₂S : IsCompact S)
|
|
|
|
|
(hf : ∀ s ∈ S, AnalyticAt ℂ f s) :
|
|
|
|
|
∃ o : ℂ → ℕ, ∃ F : ℂ → ℂ, ∀ z ∈ S, (AnalyticAt ℂ F z) ∧ (F z ≠ 0) ∧ (f z = F z * ∏ᶠ s ∈ S, (z - s) ^ (o s)) := by
|
|
|
|
|
|
|
|
|
|
let o : ℂ → ℕ := by
|
|
|
|
|
intro z
|
|
|
|
|
if hz : z ∈ S then
|
|
|
|
|
let A := hf z hz
|
|
|
|
|
let B := A.order
|
|
|
|
|
|
2024-08-13 08:42:47 +02:00
|
|
|
|
exact (A.order : ⊤)
|
2024-08-12 16:26:20 +02:00
|
|
|
|
else
|
|
|
|
|
exact 0
|
|
|
|
|
|
2024-08-12 13:05:55 +02:00
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem jensen_case_R_eq_one'
|
|
|
|
|
(f : ℂ → ℂ)
|
|
|
|
|
(h₁f : Differentiable ℂ f)
|
|
|
|
|
(h₂f : f 0 ≠ 0)
|
|
|
|
|
(S : Finset ℕ)
|
|
|
|
|
(a : S → ℂ)
|
|
|
|
|
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
|
|
|
|
(F : ℂ → ℂ)
|
|
|
|
|
(h₁F : Differentiable ℂ F)
|
|
|
|
|
(h₂F : ∀ z, F z ≠ 0)
|
|
|
|
|
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s))
|
|
|
|
|
:
|
|
|
|
|
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
|
|
|
|
sorry
|