nevanlinna/Nevanlinna/leftovers/holomorphic_zero.lean

172 lines
4.5 KiB
Plaintext
Raw Normal View History

2025-01-03 18:08:55 +01:00
import Init.Classical
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Topology.ContinuousOn
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.leftovers.holomorphic
import Nevanlinna.leftovers.analyticOnNhd_zeroSet
noncomputable def zeroDivisor
(f : ) :
:= by
intro z
by_cases hf : AnalyticAt f z
· exact hf.order.toNat
· exact 0
theorem analyticAtZeroDivisorSupport
{f : }
{z : }
(h : z ∈ Function.support (zeroDivisor f)) :
AnalyticAt f z := by
by_contra h₁f
simp at h
dsimp [zeroDivisor] at h
simp [h₁f] at h
theorem zeroDivisor_eq_ord_AtZeroDivisorSupport
{f : }
{z : }
(h : z ∈ Function.support (zeroDivisor f)) :
zeroDivisor f z = (analyticAtZeroDivisorSupport h).order.toNat := by
unfold zeroDivisor
simp [analyticAtZeroDivisorSupport h]
lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : , m = n := by
constructor
· intro H₁
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
by_contra H₂
rw [H₂] at H₁
simp at H₁
· intro H
obtain ⟨m, hm⟩ := H
rw [← hm]
simp
lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : , m = n := by
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
contrapose; simp; tauto
theorem zeroDivisor_localDescription
{f : }
{z₀ : }
(h : z₀ ∈ Function.support (zeroDivisor f)) :
∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
have A : zeroDivisor f ↑z₀ ≠ 0 := by exact h
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport h
rw [B] at A
have C := natural_if_toNatNeZero A
obtain ⟨m, hm⟩ := C
have h₂m : m ≠ 0 := by
rw [← hm] at A
simp at A
assumption
rw [eq_comm] at hm
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport h) m
let F := hm
rw [E] at F
have : m = zeroDivisor f z₀ := by
rw [B, hm]
simp
rwa [this] at F
theorem zeroDivisor_zeroSet
{f : }
{z₀ : }
(h : z₀ ∈ Function.support (zeroDivisor f)) :
f z₀ = 0 := by
obtain ⟨g, _, _, h₃⟩ := zeroDivisor_localDescription h
rw [Filter.Eventually.self_of_nhds h₃]
simp
left
exact h
theorem zeroDivisor_support_iff
{f : }
{z₀ : } :
z₀ ∈ Function.support (zeroDivisor f) ↔
f z₀ = 0 ∧
AnalyticAt f z₀ ∧
∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
constructor
· intro hz
constructor
· exact zeroDivisor_zeroSet hz
· constructor
· exact analyticAtZeroDivisorSupport hz
· exact zeroDivisor_localDescription hz
· intro ⟨h₁, h₂, h₃⟩
have : zeroDivisor f z₀ = (h₂.order).toNat := by
unfold zeroDivisor
simp [h₂]
simp [this]
simp [(h₂.order_eq_nat_iff (zeroDivisor f z₀)).2 h₃]
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h₃
rw [Filter.Eventually.self_of_nhds h₃g] at h₁
simp [h₂g] at h₁
assumption
theorem topOnPreconnected
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
∀ (hz : z ∈ U), (h₁f z hz).order ≠ := by
by_contra H
push_neg at H
obtain ⟨z', hz'⟩ := H
rw [AnalyticAt.order_eq_top_iff] at hz'
rw [← AnalyticAt.frequently_zero_iff_eventually_zero (h₁f z z')] at hz'
have A := AnalyticOnNhd.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z' hz'
tauto
theorem supportZeroSet
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
ext x
constructor
· intro hx
constructor
· exact hx.1
exact zeroDivisor_zeroSet hx.2
· simp
intro h₁x h₂x
constructor
· exact h₁x
· let A := zeroDivisor_support_iff (f := f) (z₀ := x)
simp at A
rw [A]
constructor
· exact h₂x
· constructor
· exact h₁f x h₁x
· have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x)
simp at B
rw [← B]
dsimp [zeroDivisor]
simp [h₁f x h₁x]
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
exact topOnPreconnected hU h₁f h₂f h₁x