78 lines
2.6 KiB
Plaintext
78 lines
2.6 KiB
Plaintext
|
/-
|
|||
|
Copyright (c) 2024 Stefan Kebekus. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Stefan Kebekus
|
|||
|
-/
|
|||
|
|
|||
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
|||
|
|
|||
|
/-!
|
|||
|
|
|||
|
# Canoncial Elements in Tensor Powers of Real Inner Product Spaces
|
|||
|
|
|||
|
Given an `InnerProductSpace ℝ E`, this file defines two canonical tensors, which
|
|||
|
are relevant when for a coordinate-free definition of differential operators
|
|||
|
such as the Laplacian.
|
|||
|
|
|||
|
* `InnerProductSpace.canonicalContravariantTensor E : E ⊗[ℝ] E →ₗ[ℝ] ℝ`. This is
|
|||
|
the element corresponding to the inner product.
|
|||
|
|
|||
|
* If `E` is finite-dimensional, then `E ⊗[ℝ] E` is canonically isomorphic to its
|
|||
|
dual. Accordingly, there exists an element
|
|||
|
`InnerProductSpace.canonicalCovariantTensor E : E ⊗[ℝ] E` that corresponds to
|
|||
|
`InnerProductSpace.canonicalContravariantTensor E` under this identification.
|
|||
|
|
|||
|
The theorem `InnerProductSpace.canonicalCovariantTensorRepresentation` shows
|
|||
|
that `InnerProductSpace.canonicalCovariantTensor E` can be computed from any
|
|||
|
orthonormal basis `v` as `∑ i, (v i) ⊗ₜ[ℝ] (v i)`.
|
|||
|
|
|||
|
-/
|
|||
|
|
|||
|
open InnerProductSpace
|
|||
|
open TensorProduct
|
|||
|
|
|||
|
|
|||
|
noncomputable def InnerProductSpace.canonicalContravariantTensor
|
|||
|
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E]
|
|||
|
: E ⊗[ℝ] E →ₗ[ℝ] ℝ := TensorProduct.lift bilinFormOfRealInner
|
|||
|
|
|||
|
|
|||
|
noncomputable def InnerProductSpace.canonicalCovariantTensor
|
|||
|
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
|||
|
: E ⊗[ℝ] E := ∑ i, ((stdOrthonormalBasis ℝ E) i) ⊗ₜ[ℝ] ((stdOrthonormalBasis ℝ E) i)
|
|||
|
|
|||
|
theorem InnerProductSpace.canonicalCovariantTensorRepresentation
|
|||
|
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
|||
|
[Fintype ι]
|
|||
|
(v : OrthonormalBasis ι ℝ E) :
|
|||
|
InnerProductSpace.canonicalCovariantTensor E = ∑ i, (v i) ⊗ₜ[ℝ] (v i) := by
|
|||
|
|
|||
|
let w := stdOrthonormalBasis ℝ E
|
|||
|
conv =>
|
|||
|
right
|
|||
|
arg 2
|
|||
|
intro i
|
|||
|
rw [← w.sum_repr' (v i)]
|
|||
|
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul]
|
|||
|
|
|||
|
conv =>
|
|||
|
right
|
|||
|
rw [Finset.sum_comm]
|
|||
|
arg 2
|
|||
|
intro y
|
|||
|
rw [Finset.sum_comm]
|
|||
|
arg 2
|
|||
|
intro x
|
|||
|
rw [← Finset.sum_smul]
|
|||
|
arg 1
|
|||
|
arg 2
|
|||
|
intro i
|
|||
|
rw [← real_inner_comm (w x)]
|
|||
|
simp_rw [OrthonormalBasis.sum_inner_mul_inner v]
|
|||
|
|
|||
|
have {i} : ∑ j, ⟪w i, w j⟫_ℝ • w i ⊗ₜ[ℝ] w j = w i ⊗ₜ[ℝ] w i := by
|
|||
|
rw [Fintype.sum_eq_single i, orthonormal_iff_ite.1 w.orthonormal]; simp
|
|||
|
intro _ _; rw [orthonormal_iff_ite.1 w.orthonormal]; simp; tauto
|
|||
|
simp_rw [this]
|
|||
|
rfl
|