462 lines
13 KiB
Plaintext
462 lines
13 KiB
Plaintext
|
import Mathlib.Analysis.Analytic.Constructions
|
|||
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|||
|
import Mathlib.Analysis.Complex.Basic
|
|||
|
import Nevanlinna.analyticAt
|
|||
|
|
|||
|
|
|||
|
noncomputable def AnalyticOnNhd.order
|
|||
|
{f : ℂ → ℂ} {U : Set ℂ} (hf : AnalyticOnNhd ℂ f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticOnNhd.order_eq_nat_iff
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
{z₀ : U}
|
|||
|
(hf : AnalyticOnNhd ℂ f U)
|
|||
|
(n : ℕ) :
|
|||
|
hf.order z₀ = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
|||
|
|
|||
|
constructor
|
|||
|
-- Direction →
|
|||
|
intro hn
|
|||
|
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ z₀.2) n).1 hn
|
|||
|
|
|||
|
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
|||
|
-- removable singularity removed
|
|||
|
let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
|||
|
|
|||
|
-- Describe g near z₀
|
|||
|
have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
|||
|
rw [eventually_nhds_iff]
|
|||
|
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
|
|||
|
use t
|
|||
|
constructor
|
|||
|
· intro y h₁y
|
|||
|
by_cases h₂y : y = z₀
|
|||
|
· dsimp [g]; simp [h₂y]
|
|||
|
· dsimp [g]; simp [h₂y]
|
|||
|
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
|||
|
exact h₁t y h₁y
|
|||
|
norm_num
|
|||
|
rw [sub_eq_zero]
|
|||
|
tauto
|
|||
|
· constructor
|
|||
|
· assumption
|
|||
|
· assumption
|
|||
|
|
|||
|
-- Describe g near points z₁ that are different from z₀
|
|||
|
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
|||
|
intro hz₁
|
|||
|
rw [eventually_nhds_iff]
|
|||
|
use {z₀.1}ᶜ
|
|||
|
constructor
|
|||
|
· intro y hy
|
|||
|
simp at hy
|
|||
|
simp [g, hy]
|
|||
|
· exact ⟨isOpen_compl_singleton, hz₁⟩
|
|||
|
|
|||
|
-- Use g and show that it has all required properties
|
|||
|
use g
|
|||
|
constructor
|
|||
|
· -- AnalyticOn ℂ g U
|
|||
|
intro z h₁z
|
|||
|
by_cases h₂z : z = z₀
|
|||
|
· rw [h₂z]
|
|||
|
apply AnalyticAt.congr h₁gloc
|
|||
|
exact Filter.EventuallyEq.symm g_near_z₀
|
|||
|
· simp_rw [eq_comm] at g_near_z₁
|
|||
|
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
|
|||
|
apply AnalyticAt.div
|
|||
|
exact hf z h₁z
|
|||
|
apply AnalyticAt.pow
|
|||
|
apply AnalyticAt.sub
|
|||
|
apply analyticAt_id
|
|||
|
apply analyticAt_const
|
|||
|
simp
|
|||
|
rw [sub_eq_zero]
|
|||
|
tauto
|
|||
|
· constructor
|
|||
|
· simp [g]; tauto
|
|||
|
· intro z
|
|||
|
by_cases h₂z : z = z₀
|
|||
|
· rw [h₂z, g_near_z₀.self_of_nhds]
|
|||
|
exact h₃gloc.self_of_nhds
|
|||
|
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
|||
|
simp [h₂z]
|
|||
|
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel₀]
|
|||
|
simp; norm_num
|
|||
|
rw [sub_eq_zero]
|
|||
|
tauto
|
|||
|
|
|||
|
-- direction ←
|
|||
|
intro h
|
|||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
|||
|
dsimp [AnalyticOnNhd.order]
|
|||
|
rw [AnalyticAt.order_eq_nat_iff]
|
|||
|
use g
|
|||
|
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticOnNhd.support_of_order₁
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(hf : AnalyticOnNhd ℂ f U) :
|
|||
|
Function.support hf.order = U.restrict f⁻¹' {0} := by
|
|||
|
ext u
|
|||
|
simp [AnalyticOnNhd.order]
|
|||
|
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticOnNhd.eliminateZeros
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
{A : Finset U}
|
|||
|
(hf : AnalyticOnNhd ℂ f U)
|
|||
|
(n : U → ℕ) :
|
|||
|
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
|||
|
|
|||
|
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
|||
|
|
|||
|
-- case empty
|
|||
|
simp
|
|||
|
use f
|
|||
|
simp
|
|||
|
exact hf
|
|||
|
|
|||
|
-- case insert
|
|||
|
intro b₀ B hb iHyp
|
|||
|
intro hBinsert
|
|||
|
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
|||
|
|
|||
|
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
|||
|
|
|||
|
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
|||
|
|
|||
|
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a)
|
|||
|
|
|||
|
have : f = fun z ↦ φ z * g₀ z := by
|
|||
|
funext z
|
|||
|
rw [h₃g₀ z]
|
|||
|
rfl
|
|||
|
simp_rw [this]
|
|||
|
|
|||
|
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
|||
|
dsimp [φ]
|
|||
|
apply Finset.analyticAt_prod
|
|||
|
intro b _
|
|||
|
apply AnalyticAt.pow
|
|||
|
apply AnalyticAt.sub
|
|||
|
apply analyticAt_id
|
|||
|
exact analyticAt_const
|
|||
|
|
|||
|
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
|||
|
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
|||
|
use φ
|
|||
|
constructor
|
|||
|
· assumption
|
|||
|
· constructor
|
|||
|
· dsimp [φ]
|
|||
|
push_neg
|
|||
|
rw [Finset.prod_ne_zero_iff]
|
|||
|
intro a ha
|
|||
|
simp
|
|||
|
have : ¬ (b₀.1 - a.1 = 0) := by
|
|||
|
by_contra C
|
|||
|
rw [sub_eq_zero] at C
|
|||
|
rw [SetCoe.ext C] at hb
|
|||
|
tauto
|
|||
|
tauto
|
|||
|
· simp
|
|||
|
|
|||
|
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
|||
|
|
|||
|
rw [h₂φ]
|
|||
|
simp
|
|||
|
|
|||
|
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOnNhd.order_eq_nat_iff h₁g₀ (n b₀)).1 this
|
|||
|
|
|||
|
use g₁
|
|||
|
constructor
|
|||
|
· exact h₁g₁
|
|||
|
· constructor
|
|||
|
· intro a h₁a
|
|||
|
by_cases h₂a : a = b₀
|
|||
|
· rwa [h₂a]
|
|||
|
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
|
|||
|
let B' := h₃g₁ a
|
|||
|
let C' := h₂g₀ a A'
|
|||
|
rw [B'] at C'
|
|||
|
exact right_ne_zero_of_smul C'
|
|||
|
· intro z
|
|||
|
let A' := h₃g₀ z
|
|||
|
rw [h₃g₁ z] at A'
|
|||
|
rw [A']
|
|||
|
rw [← smul_assoc]
|
|||
|
congr
|
|||
|
simp
|
|||
|
rw [Finset.prod_insert]
|
|||
|
ring
|
|||
|
exact hb
|
|||
|
|
|||
|
|
|||
|
theorem XX
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(hU : IsPreconnected U)
|
|||
|
(h₁f : AnalyticOnNhd ℂ f U)
|
|||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|||
|
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
|
|||
|
|
|||
|
intro hu
|
|||
|
apply ENat.coe_toNat
|
|||
|
by_contra C
|
|||
|
rw [(h₁f u hu).order_eq_top_iff] at C
|
|||
|
rw [← (h₁f u hu).frequently_zero_iff_eventually_zero] at C
|
|||
|
obtain ⟨u₁, h₁u₁, h₂u₁⟩ := h₂f
|
|||
|
rw [(h₁f.eqOn_zero_of_preconnected_of_frequently_eq_zero hU hu C) h₁u₁] at h₂u₁
|
|||
|
tauto
|
|||
|
|
|||
|
|
|||
|
theorem discreteZeros
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(hU : IsPreconnected U)
|
|||
|
(h₁f : AnalyticOnNhd ℂ f U)
|
|||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|||
|
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
|
|||
|
|
|||
|
simp_rw [← singletons_open_iff_discrete]
|
|||
|
simp_rw [Metric.isOpen_singleton_iff]
|
|||
|
|
|||
|
intro z
|
|||
|
|
|||
|
let A := XX hU h₁f h₂f z.1.2
|
|||
|
rw [eq_comm] at A
|
|||
|
rw [AnalyticAt.order_eq_nat_iff] at A
|
|||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
|||
|
|
|||
|
rw [Metric.eventually_nhds_iff_ball] at h₃g
|
|||
|
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
|
|||
|
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
|
|||
|
have : {0}ᶜ ∈ nhds (g z) := by
|
|||
|
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
|||
|
|
|||
|
let F := h₄g.preimage_mem_nhds this
|
|||
|
rw [Metric.mem_nhds_iff] at F
|
|||
|
obtain ⟨ε, h₁ε, h₂ε⟩ := F
|
|||
|
use ε
|
|||
|
constructor; exact h₁ε
|
|||
|
intro y hy
|
|||
|
let G := h₂ε hy
|
|||
|
simp at G
|
|||
|
exact G
|
|||
|
obtain ⟨ε₁, h₁ε₁⟩ := this
|
|||
|
|
|||
|
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
|
|||
|
use min ε₁ ε₂
|
|||
|
constructor
|
|||
|
· have : 0 < min ε₁ ε₂ := by
|
|||
|
rw [lt_min_iff]
|
|||
|
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
|
|||
|
exact this
|
|||
|
|
|||
|
intro y
|
|||
|
intro h₁y
|
|||
|
|
|||
|
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
|
|||
|
simp
|
|||
|
calc dist y z
|
|||
|
_ < min ε₁ ε₂ := by assumption
|
|||
|
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
|
|||
|
|
|||
|
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
|
|||
|
simp
|
|||
|
calc dist y z
|
|||
|
_ < min ε₁ ε₂ := by assumption
|
|||
|
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
|||
|
|
|||
|
have F := h₂ε₂ y.1 h₂y
|
|||
|
have : f y = 0 := by exact y.2
|
|||
|
rw [this] at F
|
|||
|
simp at F
|
|||
|
|
|||
|
have : g y.1 ≠ 0 := by
|
|||
|
exact h₁ε₁.2 y h₃y
|
|||
|
simp [this] at F
|
|||
|
ext
|
|||
|
rw [sub_eq_zero] at F
|
|||
|
tauto
|
|||
|
|
|||
|
|
|||
|
theorem finiteZeros
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(h₁U : IsPreconnected U)
|
|||
|
(h₂U : IsCompact U)
|
|||
|
(h₁f : AnalyticOnNhd ℂ f U)
|
|||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|||
|
Set.Finite (U.restrict f⁻¹' {0}) := by
|
|||
|
|
|||
|
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
|
|||
|
apply IsClosed.preimage
|
|||
|
apply continuousOn_iff_continuous_restrict.1
|
|||
|
exact h₁f.continuousOn
|
|||
|
exact isClosed_singleton
|
|||
|
|
|||
|
have : CompactSpace U := by
|
|||
|
exact isCompact_iff_compactSpace.mp h₂U
|
|||
|
|
|||
|
apply (IsClosed.isCompact closedness).finite
|
|||
|
exact discreteZeros h₁U h₁f h₂f
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticOnNhdCompact.eliminateZeros
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(h₁U : IsPreconnected U)
|
|||
|
(h₂U : IsCompact U)
|
|||
|
(h₁f : AnalyticOnNhd ℂ f U)
|
|||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|||
|
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOnNhd ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
|||
|
|
|||
|
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
|||
|
|
|||
|
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
|||
|
|
|||
|
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
|||
|
intro a _
|
|||
|
dsimp [n, AnalyticOnNhd.order]
|
|||
|
rw [eq_comm]
|
|||
|
apply XX h₁U
|
|||
|
exact h₂f
|
|||
|
|
|||
|
|
|||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
|
|||
|
use g
|
|||
|
use A
|
|||
|
|
|||
|
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
|||
|
intro z
|
|||
|
rw [h₃g z]
|
|||
|
|
|||
|
constructor
|
|||
|
· exact h₁g
|
|||
|
· constructor
|
|||
|
· intro z h₁z
|
|||
|
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
|||
|
· exact h₂g ⟨z, h₁z⟩ h₂z
|
|||
|
· have : f z ≠ 0 := by
|
|||
|
by_contra C
|
|||
|
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
|||
|
dsimp [A]
|
|||
|
simp
|
|||
|
exact C
|
|||
|
tauto
|
|||
|
rw [inter z] at this
|
|||
|
exact right_ne_zero_of_smul this
|
|||
|
· exact inter
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticOnNhdCompact.eliminateZeros₂
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(h₁U : IsPreconnected U)
|
|||
|
(h₂U : IsCompact U)
|
|||
|
(h₁f : AnalyticOnNhd ℂ f U)
|
|||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|||
|
∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ (finiteZeros h₁U h₂U h₁f h₂f).toFinset, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
|||
|
|
|||
|
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
|||
|
|
|||
|
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
|||
|
|
|||
|
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
|||
|
intro a _
|
|||
|
dsimp [n, AnalyticOnNhd.order]
|
|||
|
rw [eq_comm]
|
|||
|
apply XX h₁U
|
|||
|
exact h₂f
|
|||
|
|
|||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
|
|||
|
use g
|
|||
|
|
|||
|
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
|||
|
intro z
|
|||
|
rw [h₃g z]
|
|||
|
|
|||
|
constructor
|
|||
|
· exact h₁g
|
|||
|
· constructor
|
|||
|
· intro z h₁z
|
|||
|
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
|||
|
· exact h₂g ⟨z, h₁z⟩ h₂z
|
|||
|
· have : f z ≠ 0 := by
|
|||
|
by_contra C
|
|||
|
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
|||
|
dsimp [A]
|
|||
|
simp
|
|||
|
exact C
|
|||
|
tauto
|
|||
|
rw [inter z] at this
|
|||
|
exact right_ne_zero_of_smul this
|
|||
|
· exact h₃g
|
|||
|
|
|||
|
|
|||
|
theorem AnalyticOnNhdCompact.eliminateZeros₁
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(h₁U : IsPreconnected U)
|
|||
|
(h₂U : IsCompact U)
|
|||
|
(h₁f : AnalyticOnNhd ℂ f U)
|
|||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|||
|
∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
|||
|
|
|||
|
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
|||
|
|
|||
|
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
|||
|
|
|||
|
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
|||
|
intro a _
|
|||
|
dsimp [n, AnalyticOnNhd.order]
|
|||
|
rw [eq_comm]
|
|||
|
apply XX h₁U
|
|||
|
exact h₂f
|
|||
|
|
|||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
|
|||
|
use g
|
|||
|
|
|||
|
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
|||
|
intro z
|
|||
|
rw [h₃g z]
|
|||
|
|
|||
|
constructor
|
|||
|
· exact h₁g
|
|||
|
· constructor
|
|||
|
· intro z h₁z
|
|||
|
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
|||
|
· exact h₂g ⟨z, h₁z⟩ h₂z
|
|||
|
· have : f z ≠ 0 := by
|
|||
|
by_contra C
|
|||
|
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
|||
|
dsimp [A]
|
|||
|
simp
|
|||
|
exact C
|
|||
|
tauto
|
|||
|
rw [inter z] at this
|
|||
|
exact right_ne_zero_of_smul this
|
|||
|
· intro z
|
|||
|
|
|||
|
let φ : U → ℂ := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
|
|||
|
have hφ : Function.mulSupport φ ⊆ A := by
|
|||
|
intro x hx
|
|||
|
simp [φ] at hx
|
|||
|
have : (h₁f.order x).toNat ≠ 0 := by
|
|||
|
by_contra C
|
|||
|
rw [C] at hx
|
|||
|
simp at hx
|
|||
|
simp [A]
|
|||
|
exact AnalyticAt.supp_order_toNat (h₁f x x.2) this
|
|||
|
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
|
|||
|
rw [inter z]
|
|||
|
rfl
|