23 lines
669 B
Lean4
23 lines
669 B
Lean4
import Mathlib
|
||
|
||
open Real
|
||
|
||
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||
def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||
|
||
-- Definition: Sequence (u : ℕ → ℝ) converges to limit (l : ℝ)
|
||
def seq_limit (u : ℕ → ℝ) (l : ℝ) :=
|
||
∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| < ε
|
||
|
||
|
||
-- In the following, f is a function, u is a sequence, and x₀ a real number
|
||
variable
|
||
{f : ℝ → ℝ} {u : ℕ → ℝ} {x₀ : ℝ}
|
||
|
||
|
||
lemma continuity_and_limits
|
||
(hyp_f : continuous_at f x₀) (hyp_u : seq_limit u x₀) :
|
||
seq_limit (f ∘ u) (f x₀) := by
|
||
sorry
|