import Mathlib open Real variable {x : ℝ} {y : ℝ} -- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ) def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) := ∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε -- Three lemmas from the lean mathematical library example : 0 < x → 0 < √x := sqrt_pos.2 example : x ^ 2 < y ↔ (-√y < x) ∧ (x < √y) := sq_lt example : |x| < y ↔ -y < x ∧ x < y := abs_lt -- The square function def squareFct : ℝ → ℝ := fun x ↦ x ^ 2 theorem continuous_at_squareFct : continuous_at squareFct 0 := by unfold continuous_at intro e he use √e constructor · apply sqrt_pos.2 exact he · intro x hx simp_all [squareFct] apply sq_lt.2 apply abs_lt.1 exact hx