import Mathlib open Real -- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ) def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) := ∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε -- Definition: Sequence (u : ℕ → ℝ) converges to limit (l : ℝ) def seq_limit (u : ℕ → ℝ) (l : ℝ) := ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| < ε -- In the following, f is a function, u is a sequence, and x₀ a real number variable {f : ℝ → ℝ} {u : ℕ → ℝ} {x₀ : ℝ} lemma continuity_and_limits (hyp_f : continuous_at f x₀) (hyp_u : seq_limit u x₀) : seq_limit (f ∘ u) (f x₀) := by sorry