/- Copyright (c) 2025 Stefan Kebekus. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Stefan Kebekus -/ import Mathlib.Analysis.Complex.ValueDistribution.CharacteristicFunction import ColloquiumLean.PosLogEqCircleAverage /-! # Jensen's Formula of Complex Analysis If a function `g : ℂ → ℂ` is analytic without zero on the closed ball with center `c` and radius `R`, then `log ‖g ·‖` is harmonic, and the mean value theorem of harmonic functions asserts that the circle average `circleAverage (log ‖g ·‖) c R` equals `log ‖g c‖`. Note that `g c` equals `meromorphicTrailingCoeffAt f c` and see `circleAverage_nonVanishAnalytic` for the precise statement. Jensen's Formula generalizes this to the setting where `g` is merely meromorphic. In that case, the `circleAverage (log ‖g ·‖) 0 R` equals `log `‖meromorphicTrailingCoeffAt g 0‖` plus a correction term that accounts for the zeros of poles of `g` within the ball. -/ open Filter MeromorphicAt MeromorphicOn Metric Real variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] -- Should go to Mathlib.Analysis.Complex.ValueDistribution.CountingFunction lemma Function.locallyFinsuppWithin.countingFunction_finsum_eq_finsum_add' {c : ℂ} {R : ℝ} {D : ℂ → ℤ} (hR : R ≠ 0) (hD : D.support.Finite) : ∑ᶠ u, D u * (log R - log ‖c - u‖) = ∑ᶠ u, D u * log (R * ‖c - u‖⁻¹) + D c * log R := by by_cases h : c ∈ D.support · have {g : ℂ → ℝ} : (fun u ↦ D u * g u).support ⊆ hD.toFinset := fun x ↦ by simp +contextual simp only [finsum_eq_sum_of_support_subset _ this, Finset.sum_eq_sum_diff_singleton_add ((Set.Finite.mem_toFinset hD).mpr h), sub_self, norm_zero, log_zero, sub_zero, inv_zero, mul_zero, add_zero, add_left_inj] refine Finset.sum_congr rfl fun x hx ↦ ?_ simp only [Finset.mem_sdiff, Finset.notMem_singleton] at hx rw [log_mul hR (inv_ne_zero (norm_ne_zero_iff.mpr (sub_eq_zero.not.2 hx.2.symm))), log_inv] ring · simp_all only [mem_support, Decidable.not_not, Int.cast_zero, zero_mul, add_zero] refine finsum_congr fun x ↦ ?_ by_cases h₁ : c = x · simp_all · rw [log_mul hR (inv_ne_zero (norm_ne_zero_iff.mpr (sub_eq_zero.not.2 h₁))), log_inv] ring /-! ## Circle Averages In preparation to the proof of Jensen's formula, compute several circle averages. -/ /-- Let `D : ℂ → ℤ` be a function with locally finite support within the closed ball with center `c` and radius `R`, such as the zero- and pole divisor of a meromorphic function. Then, the circle average of the associated factorized rational function over the boundary of the ball equals `∑ᶠ u, (D u) * log R`. -/ @[simp] lemma circleAverage_logAbs_factorizedRational {R : ℝ} {c : ℂ} (D : Function.locallyFinsuppWithin (closedBall c |R|) ℤ) : circleAverage (∑ᶠ u, ((D u) * log ‖· - u‖)) c R = ∑ᶠ u, (D u) * log R := by have h := D.finiteSupport (isCompact_closedBall c |R|) calc circleAverage (∑ᶠ u, ((D u) * log ‖· - u‖)) c R _ = circleAverage (∑ u ∈ h.toFinset, ((D u) * log ‖· - u‖)) c R := by rw [finsum_eq_sum_of_support_subset] intro u contrapose aesop _ = ∑ i ∈ h.toFinset, circleAverage (fun x ↦ ↑(D i) * log ‖x - i‖) c R := by rw [circleAverage_sum] intro u hu apply IntervalIntegrable.const_mul apply circleIntegrable_log_norm_meromorphicOn (f := (· - u)) apply (analyticOnNhd_id.sub analyticOnNhd_const).meromorphicOn _ = ∑ u ∈ h.toFinset, ↑(D u) * log R := by apply Finset.sum_congr rfl intro u hu simp_rw [← smul_eq_mul, circleAverage_fun_smul] congr apply circleAverage_logAbs_affine apply D.supportWithinDomain simp_all _ = ∑ᶠ u, (D u) * log R := by rw [finsum_eq_sum_of_support_subset] intro u aesop /-- If `g : ℂ → ℂ` is analytic without zero on the closed ball with center `c` and radius `R`, then the circle average `circleAverage (log ‖g ·‖) c R` equals `log ‖g c‖`. -/ @[simp] lemma circleAverage_nonVanishAnalytic {R : ℝ} {c : ℂ} {g : ℂ → ℂ} (h₁g : AnalyticOnNhd ℂ g (closedBall c |R|)) (h₂g : ∀ u : closedBall c |R|, g u ≠ 0) : circleAverage (log ‖g ·‖) c R = log ‖g c‖ := HarmonicOnNhd.circleAverage_eq (fun x hx ↦ (h₁g x hx).harmonicAt_log_norm (h₂g ⟨x, hx⟩)) /-! ## Jensen's Formula -/ /-! **Jensen's Formula**: If `f : ℂ → ℂ` is meromorphic on the closed ball with center `c` and radius `R`, then the `circleAverage (log ‖f ·‖) 0 R` equals `log `‖meromorphicTrailingCoeffAt f 0‖` plus a correction term that accounts for the zeros of poles of `f` within the ball. -/ theorem MeromorphicOn.JensenFormula {c : ℂ} {R : ℝ} {f : ℂ → ℂ} (hR : R ≠ 0) (h₁f : MeromorphicOn f (closedBall c |R|)) : circleAverage (log ‖f ·‖) c R = ∑ᶠ u, divisor f (closedBall c |R|) u * log (R * ‖c - u‖⁻¹) + divisor f (closedBall c |R|) c * log R + log ‖meromorphicTrailingCoeffAt f c‖ := by -- Shorthand notation to keep line size in check let CB := closedBall c |R| by_cases h₂f : ∀ u : CB, meromorphicOrderAt f u ≠ ⊤ · have h₃f := (divisor f CB).finiteSupport (isCompact_closedBall c |R|) -- Extract zeros & poles and compute obtain ⟨g, h₁g, h₂g, h₃g⟩ := h₁f.extract_zeros_poles h₂f h₃f calc circleAverage (log ‖f ·‖) c R _ = circleAverage ((∑ᶠ u, (divisor f CB u * log ‖· - u‖)) + (log ‖g ·‖)) c R := by have h₄g := extract_zeros_poles_log h₂g h₃g rw [circleAverage_congr_codiscreteWithin (codiscreteWithin.mono sphere_subset_closedBall h₄g) hR] _ = circleAverage (∑ᶠ u, (divisor f CB u * log ‖· - u‖)) c R + circleAverage (log ‖g ·‖) c R := by apply circleAverage_add · exact circleIntegrable_log_norm_factorizedRational (divisor f CB) · exact circleIntegrable_log_norm_meromorphicOn (h₁g.mono sphere_subset_closedBall).meromorphicOn _ = ∑ᶠ u, divisor f CB u * log R + log ‖g c‖ := by simp [h₁g, h₂g] _ = ∑ᶠ u, divisor f CB u * log R + (log ‖meromorphicTrailingCoeffAt f c‖ - ∑ᶠ u, divisor f CB u * log ‖c - u‖) := by have t₀ : c ∈ CB := by simp [CB] have t₁ : AccPt c (𝓟 CB) := by apply accPt_iff_frequently_nhdsNE.mpr apply compl_notMem apply mem_nhdsWithin.mpr use ball c |R| simpa [hR] using fun _ ⟨h, _⟩ ↦ ball_subset_closedBall h simp [MeromorphicOn.log_norm_meromorphicTrailingCoeffAt_extract_zeros_poles h₃f t₀ t₁ (h₁f c t₀) (h₁g c t₀) (h₂g ⟨c, t₀⟩) h₃g] _ = ∑ᶠ u, divisor f CB u * log R - ∑ᶠ u, divisor f CB u * log ‖c - u‖ + log ‖meromorphicTrailingCoeffAt f c‖ := by ring _ = (∑ᶠ u, divisor f CB u * (log R - log ‖c - u‖)) + log ‖meromorphicTrailingCoeffAt f c‖ := by rw [← finsum_sub_distrib] · simp_rw [← mul_sub] · apply h₃f.subset (fun _ ↦ (by simp_all)) · apply h₃f.subset (fun _ ↦ (by simp_all)) _ = ∑ᶠ u, divisor f CB u * log (R * ‖c - u‖⁻¹) + divisor f CB c * log R + log ‖meromorphicTrailingCoeffAt f c‖ := by rw [Function.locallyFinsuppWithin.countingFunction_finsum_eq_finsum_add' hR h₃f] · -- Trivial case: `f` vanishes on a codiscrete set rw [← h₁f.exists_meromorphicOrderAt_ne_top_iff_forall ⟨nonempty_closedBall.mpr (abs_nonneg R), (convex_closedBall c |R|).isPreconnected⟩] at h₂f push_neg at h₂f have : divisor f CB = 0 := by ext x by_cases h : x ∈ CB <;> simp_all [CB] simp only [CB, this, Function.locallyFinsuppWithin.coe_zero, Pi.zero_apply, Int.cast_zero, zero_mul, finsum_zero, add_zero, zero_add] rw [MeromorphicAt.meromorphicTrailingCoeffAt_of_order_eq_top (by aesop), norm_zero, log_zero] have : f =ᶠ[codiscreteWithin CB] 0 := by filter_upwards [h₁f.meromorphicNFAt_mem_codiscreteWithin, self_mem_codiscreteWithin CB] with z h₁z h₂z simpa [h₂f ⟨z, h₂z⟩] using (not_iff_not.2 h₁z.meromorphicOrderAt_eq_zero_iff) rw [circleAverage_congr_codiscreteWithin (f₂ := 0) _ hR] · simp only [circleAverage, mul_inv_rev, Pi.zero_apply, intervalIntegral.integral_zero, smul_eq_mul, mul_zero] apply Filter.codiscreteWithin.mono (U := CB) sphere_subset_closedBall filter_upwards [this] with z hz simp_all