-- Library Import: Basic facts about real numbers import Mathlib.Data.Real.Basic open Real -- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ) def continuous (f : ℝ → ℝ) (x₀ : ℝ) := ∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε -- Definition: Sequence (u : ℕ → ℝ) converges to limit (l : ℝ) def limit (u : ℕ → ℝ) (l : ℝ) := ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| < ε -- In the following, f is a function, u is a sequence, and x₀ a real number variable {f : ℝ → ℝ} {u : ℕ → ℝ} {x₀ : ℝ} -- Theorem: If f is continuous at x₀ and the sequence u converges to x₀, then -- the sequence f ∘ u converges to f x₀. theorem continuity_and_limits (hyp_f : continuous f x₀) (hyp_u : limit u x₀) : limit (f ∘ u) (f x₀) := by unfold limit at * unfold continuous at * intro ε hε obtain ⟨δ, h₁δ, h₂δ⟩ := hyp_f ε hε obtain ⟨N, hN⟩ := hyp_u δ h₁δ use N intro n hn apply h₂δ apply hN exact hn