This commit is contained in:
@@ -1 +1 @@
|
|||||||
import ColloquiumLean.Basic
|
import ColloquiumLean.ContinuousLimitSolution
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
def hello := "world"
|
|
||||||
22
ColloquiumLean/ContinuousLimit.lean
Normal file
22
ColloquiumLean/ContinuousLimit.lean
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
import Mathlib
|
||||||
|
|
||||||
|
open Real
|
||||||
|
|
||||||
|
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||||||
|
def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||||||
|
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||||||
|
|
||||||
|
-- Definition: Sequence (u : ℕ → ℝ) converges to limit (l : ℝ)
|
||||||
|
def seq_limit (u : ℕ → ℝ) (l : ℝ) :=
|
||||||
|
∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| < ε
|
||||||
|
|
||||||
|
|
||||||
|
-- In the following, f is a function, u is a sequence, and x₀ a real number
|
||||||
|
variable
|
||||||
|
{f : ℝ → ℝ} {u : ℕ → ℝ} {x₀ : ℝ}
|
||||||
|
|
||||||
|
|
||||||
|
lemma continuity_and_limits
|
||||||
|
(hyp_f : continuous_at f x₀) (hyp_u : seq_limit u x₀) :
|
||||||
|
seq_limit (f ∘ u) (f x₀) := by
|
||||||
|
sorry
|
||||||
35
ColloquiumLean/ContinuousLimitSolution.lean
Normal file
35
ColloquiumLean/ContinuousLimitSolution.lean
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
-- Library Import: Basic facts about real numbers
|
||||||
|
import Mathlib.Data.Real.Basic
|
||||||
|
open Real
|
||||||
|
|
||||||
|
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||||||
|
def continuous (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||||||
|
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||||||
|
|
||||||
|
-- Definition: Sequence (u : ℕ → ℝ) converges to limit (l : ℝ)
|
||||||
|
def limit (u : ℕ → ℝ) (l : ℝ) :=
|
||||||
|
∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| < ε
|
||||||
|
|
||||||
|
-- In the following, f is a function, u is a sequence, and x₀ a real number
|
||||||
|
variable {f : ℝ → ℝ} {u : ℕ → ℝ} {x₀ : ℝ}
|
||||||
|
|
||||||
|
-- Theorem: If f is continuous at x₀ and the sequence u converges to x₀, then
|
||||||
|
-- the sequence f ∘ u converges to f x₀.
|
||||||
|
theorem continuity_and_limits
|
||||||
|
(hyp_f : continuous f x₀) (hyp_u : limit u x₀) :
|
||||||
|
limit (f ∘ u) (f x₀) := by
|
||||||
|
|
||||||
|
unfold limit at *
|
||||||
|
unfold continuous at *
|
||||||
|
|
||||||
|
intro ε hε
|
||||||
|
|
||||||
|
obtain ⟨δ, h₁δ, h₂δ⟩ := hyp_f ε hε
|
||||||
|
|
||||||
|
obtain ⟨N, hN⟩ := hyp_u δ h₁δ
|
||||||
|
|
||||||
|
use N
|
||||||
|
intro n hn
|
||||||
|
apply h₂δ
|
||||||
|
apply hN
|
||||||
|
exact hn
|
||||||
35
ColloquiumLean/ContinuousSquare.lean
Normal file
35
ColloquiumLean/ContinuousSquare.lean
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
import Mathlib
|
||||||
|
|
||||||
|
open Real
|
||||||
|
|
||||||
|
variable
|
||||||
|
{x : ℝ} {y : ℝ}
|
||||||
|
|
||||||
|
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||||||
|
def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||||||
|
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||||||
|
|
||||||
|
-- Three lemmas from the lean mathematical library
|
||||||
|
example : 0 < x → 0 < √x := sqrt_pos.2
|
||||||
|
|
||||||
|
example : x ^ 2 < y ↔ (-√y < x) ∧ (x < √y) := sq_lt
|
||||||
|
|
||||||
|
example : |x| < y ↔ -y < x ∧ x < y := abs_lt
|
||||||
|
|
||||||
|
-- The square function
|
||||||
|
def squareFct : ℝ → ℝ := fun x ↦ x ^ 2
|
||||||
|
|
||||||
|
|
||||||
|
theorem continuous_at_squareFct :
|
||||||
|
continuous_at squareFct 0 := by
|
||||||
|
unfold continuous_at
|
||||||
|
intro e he
|
||||||
|
use √e
|
||||||
|
constructor
|
||||||
|
· apply sqrt_pos.2
|
||||||
|
exact he
|
||||||
|
· intro x hx
|
||||||
|
simp_all [squareFct]
|
||||||
|
apply sq_lt.2
|
||||||
|
apply abs_lt.1
|
||||||
|
exact hx
|
||||||
39
ColloquiumLean/ContinuousSquareSolution.lean
Normal file
39
ColloquiumLean/ContinuousSquareSolution.lean
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
-- Library Import: Basic facts about real numbers and the root function
|
||||||
|
import Mathlib.Data.Real.Sqrt
|
||||||
|
open Real
|
||||||
|
|
||||||
|
-- In the following, x and y are real numbers
|
||||||
|
variable {x : ℝ} {y : ℝ}
|
||||||
|
|
||||||
|
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||||||
|
def continuous (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||||||
|
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||||||
|
|
||||||
|
-- Definition: The square function
|
||||||
|
def squareFct : ℝ → ℝ := fun x ↦ x ^ 2
|
||||||
|
|
||||||
|
|
||||||
|
-- Reminder: Three facts from the library that we will use.
|
||||||
|
example : 0 < x → 0 < √x := sqrt_pos.2
|
||||||
|
|
||||||
|
example : x ^ 2 < y ↔ (-√y < x) ∧ (x < √y) := sq_lt
|
||||||
|
|
||||||
|
example : |x| < y ↔ -y < x ∧ x < y := abs_lt
|
||||||
|
|
||||||
|
|
||||||
|
-- Theorem: The square function is continuous at x₀ = 0
|
||||||
|
theorem ContinuousAt_sq :
|
||||||
|
continuous squareFct 0 := by
|
||||||
|
|
||||||
|
unfold continuous
|
||||||
|
|
||||||
|
intro ε hε
|
||||||
|
use √ε
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· apply sqrt_pos.2
|
||||||
|
exact hε
|
||||||
|
· intro x hx
|
||||||
|
simp_all [squareFct]
|
||||||
|
apply sq_lt.2
|
||||||
|
exact abs_lt.1 hx
|
||||||
Reference in New Issue
Block a user