This commit is contained in:
39
ColloquiumLean/ContinuousSquareSolution.lean
Normal file
39
ColloquiumLean/ContinuousSquareSolution.lean
Normal file
@@ -0,0 +1,39 @@
|
||||
-- Library Import: Basic facts about real numbers and the root function
|
||||
import Mathlib.Data.Real.Sqrt
|
||||
open Real
|
||||
|
||||
-- In the following, x and y are real numbers
|
||||
variable {x : ℝ} {y : ℝ}
|
||||
|
||||
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||||
def continuous (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||||
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||||
|
||||
-- Definition: The square function
|
||||
def squareFct : ℝ → ℝ := fun x ↦ x ^ 2
|
||||
|
||||
|
||||
-- Reminder: Three facts from the library that we will use.
|
||||
example : 0 < x → 0 < √x := sqrt_pos.2
|
||||
|
||||
example : x ^ 2 < y ↔ (-√y < x) ∧ (x < √y) := sq_lt
|
||||
|
||||
example : |x| < y ↔ -y < x ∧ x < y := abs_lt
|
||||
|
||||
|
||||
-- Theorem: The square function is continuous at x₀ = 0
|
||||
theorem ContinuousAt_sq :
|
||||
continuous squareFct 0 := by
|
||||
|
||||
unfold continuous
|
||||
|
||||
intro ε hε
|
||||
use √ε
|
||||
|
||||
constructor
|
||||
· apply sqrt_pos.2
|
||||
exact hε
|
||||
· intro x hx
|
||||
simp_all [squareFct]
|
||||
apply sq_lt.2
|
||||
exact abs_lt.1 hx
|
||||
Reference in New Issue
Block a user