This commit is contained in:
35
ColloquiumLean/ContinuousSquare.lean
Normal file
35
ColloquiumLean/ContinuousSquare.lean
Normal file
@@ -0,0 +1,35 @@
|
||||
import Mathlib
|
||||
|
||||
open Real
|
||||
|
||||
variable
|
||||
{x : ℝ} {y : ℝ}
|
||||
|
||||
-- Definition: Function (f : ℝ → ℝ) is continuous at (x₀ : ℝ)
|
||||
def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) :=
|
||||
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| < δ → |f x - f x₀| < ε
|
||||
|
||||
-- Three lemmas from the lean mathematical library
|
||||
example : 0 < x → 0 < √x := sqrt_pos.2
|
||||
|
||||
example : x ^ 2 < y ↔ (-√y < x) ∧ (x < √y) := sq_lt
|
||||
|
||||
example : |x| < y ↔ -y < x ∧ x < y := abs_lt
|
||||
|
||||
-- The square function
|
||||
def squareFct : ℝ → ℝ := fun x ↦ x ^ 2
|
||||
|
||||
|
||||
theorem continuous_at_squareFct :
|
||||
continuous_at squareFct 0 := by
|
||||
unfold continuous_at
|
||||
intro e he
|
||||
use √e
|
||||
constructor
|
||||
· apply sqrt_pos.2
|
||||
exact he
|
||||
· intro x hx
|
||||
simp_all [squareFct]
|
||||
apply sq_lt.2
|
||||
apply abs_lt.1
|
||||
exact hx
|
||||
Reference in New Issue
Block a user