This commit is contained in:
@@ -1,53 +1,45 @@
|
||||
import Mathlib
|
||||
|
||||
open MeromorphicOn Real Set Classical Topology
|
||||
open Filter Set Topology
|
||||
|
||||
variable
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
{X : Type*} {x : X} [TopologicalSpace X]
|
||||
|
||||
theorem eventually_nhdsWithin_eventually_nhds_iff_of_isOpen {s : Set X} {a : X} {p : X → Prop}
|
||||
(hs : IsOpen s) : (∀ᶠ y in 𝓝[s] a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝[s] a, p x := by
|
||||
nth_rw 2 [← eventually_eventually_nhdsWithin]
|
||||
constructor
|
||||
· intro h
|
||||
filter_upwards [h] with _ hy
|
||||
exact eventually_nhdsWithin_of_eventually_nhds hy
|
||||
· intro h
|
||||
filter_upwards [h, eventually_nhdsWithin_of_forall fun _ a ↦ a] with _ _ _
|
||||
simp_all [IsOpen.nhdsWithin_eq]
|
||||
|
||||
@[simp]
|
||||
theorem eventually_nhdsNE_eventually_nhds_iff [T1Space X] {a : X} {p : X → Prop} :
|
||||
(∀ᶠ y in 𝓝[≠] a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝[≠] a, p x :=
|
||||
eventually_nhdsWithin_eventually_nhds_iff_of_isOpen isOpen_ne
|
||||
|
||||
theorem Filter.EventuallyEq.nhdsNE_deriv {f f₁ : 𝕜 → E} {x : 𝕜} (h : f₁ =ᶠ[𝓝[≠] x] f) :
|
||||
deriv f₁ =ᶠ[𝓝[≠] x] deriv f := by
|
||||
rw [Filter.EventuallyEq, ← eventually_nhdsNE_eventually_nhds_iff] at *
|
||||
filter_upwards [h] with y hy
|
||||
apply Filter.EventuallyEq.deriv hy
|
||||
{f : 𝕜 → E} {U : Set 𝕜}
|
||||
|
||||
/--
|
||||
Derivatives of meromorphic functions are meromorphic.
|
||||
The singular set of a meromorphic function is countable.
|
||||
-/
|
||||
@[fun_prop]
|
||||
protected theorem MeromorphicAt.deriv [CompleteSpace E] {f : 𝕜 → E} {x : 𝕜} (h : MeromorphicAt f x) :
|
||||
MeromorphicAt (deriv f) x := by
|
||||
rw [MeromorphicAt.iff_eventuallyEq_zpow_smul_analyticAt] at h
|
||||
obtain ⟨n, g, h₁g, h₂g⟩ := h
|
||||
have : _root_.deriv (fun z ↦ (z - x) ^ n • g z)
|
||||
=ᶠ[𝓝[≠] x] fun z ↦ (n * (z - x) ^ (n - 1)) • g z + (z - x) ^ n • _root_.deriv g z := by
|
||||
filter_upwards [eventually_nhdsWithin_of_eventually_nhds h₁g.eventually_analyticAt,
|
||||
eventually_nhdsWithin_of_forall fun _ a ↦ a] with z₀ h₁ h₂
|
||||
rw [deriv_smul (DifferentiableAt.zpow (by fun_prop) (by simp_all [sub_ne_zero_of_ne h₂]))
|
||||
(by fun_prop), add_comm, deriv_comp_sub_const (f := (· ^ n))]
|
||||
aesop
|
||||
rw [MeromorphicAt.meromorphicAt_congr (Filter.EventuallyEq.nhdsNE_deriv h₂g),
|
||||
MeromorphicAt.meromorphicAt_congr this]
|
||||
sorry
|
||||
theorem MeromorphicOn.countable_compl_analyticAt [SecondCountableTopology 𝕜] [CompleteSpace E]
|
||||
(h : MeromorphicOn f U) :
|
||||
({z | AnalyticAt 𝕜 f z}ᶜ ∩ U).Countable := by
|
||||
classical
|
||||
have := discreteTopology_of_codiscreteWithin (eventually_codiscreteWithin_analyticAt f h)
|
||||
apply countable_of_Lindelof_of_discrete
|
||||
|
||||
theorem MeromorphicAt.order_deriv [CompleteSpace E] {f : 𝕜 → E} {x : 𝕜} (h : MeromorphicAt f x) (h₂ : h.order ≠ 0) :
|
||||
h.deriv.order = h.order -1 := by
|
||||
|
||||
variable
|
||||
[MeasurableSpace 𝕜] [SecondCountableTopology 𝕜] [BorelSpace 𝕜]
|
||||
[MeasurableSpace E] [CompleteSpace E] [BorelSpace E]
|
||||
|
||||
/--
|
||||
Meromorphic functions are measurable.
|
||||
-/
|
||||
theorem meromorphic_measurable {f : 𝕜 → E} (h : MeromorphicOn f Set.univ) :
|
||||
Measurable f := by
|
||||
set s := {z : 𝕜 | AnalyticAt 𝕜 f z}
|
||||
have h₁ : sᶜ.Countable := by simpa using h.countable_compl_analyticAt
|
||||
have h₂ : IsOpen s := isOpen_analyticAt 𝕜 f
|
||||
have h₃ : ContinuousOn f s := fun z hz ↦ hz.continuousAt.continuousWithinAt
|
||||
apply measurable_of_isOpen
|
||||
intro V hV
|
||||
rw [(by aesop : f ⁻¹' V = (f ⁻¹' V ∩ s) ∪ (f ⁻¹' V ∩ sᶜ))]
|
||||
apply MeasurableSet.union (IsOpen.measurableSet _) (h₁.mono inter_subset_right).measurableSet
|
||||
rw [isOpen_iff_mem_nhds] at *
|
||||
intro x a
|
||||
simp_all [mem_setOf_eq, mem_inter_iff, mem_preimage, inter_mem_iff, and_true, s]
|
||||
apply h₃.continuousAt (h₂ x a.2) (hV (f x) a.1)
|
||||
|
||||
lemma ρ₀ {r : ℝ} {hr : r ≠ 0} {f g : ℝ → ℂ} (h : MeromorphicOn f Set.univ) :
|
||||
Measurable (fun x ↦ f x.1 + g x.2 : ℝ × ℝ → ℂ) := by
|
||||
sorry
|
||||
|
||||
Reference in New Issue
Block a user