Update dictionary
This commit is contained in:
parent
ee2281fe5d
commit
1fb13dfebf
|
@ -0,0 +1,18 @@
|
||||||
|
Zariski
|
||||||
|
holomorphic
|
||||||
|
geometers
|
||||||
|
Yamanoi
|
||||||
|
Brotbek
|
||||||
|
Brunebarbe
|
||||||
|
Cadorel
|
||||||
|
Javanpeykar
|
||||||
|
Campana
|
||||||
|
hyperbolicity
|
||||||
|
subvariety
|
||||||
|
Bérczi
|
||||||
|
Kirwan
|
||||||
|
hypersurfaces
|
||||||
|
Diverio-Merker-Rousseau
|
||||||
|
Grassmannian
|
||||||
|
Riedl-Yang
|
||||||
|
Bérczi-Kirwan
|
|
@ -0,0 +1,2 @@
|
||||||
|
{"rule":"PREPOSITION_VERB","sentence":"^\\QProbably the most complete result in this field is due to A. Bloch (more than 100 years ago), who -in modern language- showed that the Zariski closure of a map \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q to a complex torus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is the translate of a sub-tori.\\E$"}
|
||||||
|
{"rule":"PREPOSITION_VERB","sentence":"^\\QIts beginnings date back to 1926, when André Bloch showed that the Zariski closure of entire holomorphic curve \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q to a complex torus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is the translate of a sub-torus.\\E$"}
|
Loading…
Reference in New Issue