Next lecture

This commit is contained in:
Stefan Kebekus
2025-08-26 12:21:50 +02:00
parent 717c168c46
commit 4fef3e94f1
6 changed files with 404 additions and 11 deletions

167
02-diffbarkeit.tex Normal file
View File

@@ -0,0 +1,167 @@
% spell checker language
\selectlanguage{german}
\chapter{Differenzierbarkeit}
\section{Holomorphe Funktionen}
Wir definieren in wenigen Zeilen, komplexe Differenzierbarkeit von Funktionen
$$. Vorher erinnern wir kurz an die relevanten Begriffe aus den
Analysis-Vorlesungen.
\begin{definition}[Reelle Differenzierbarkeit]\label{def:2-1-1}
Es sei $U ⊂ $ offen und $p ∈ U$. Eine Funktion $f: U → $ ist
bei $p$ differenzierbar mit Ableitung $δ ∈ $, wenn
\[
\lim_{h → 0} \frac{f(p+h) - f(p)}{h} = δ
\]
ist.
\end{definition}
\begin{bemerkung}
Reell differenzierbare Funktionen sind stetig. Es gelten die Summenregel,
Produktregel, Quotientenregel, Kettenregel, …
\end{bemerkung}
\begin{definition}[Komplexe Differenzierbarkeit]\label{def:2-1-3}
Es sei $U ⊂ $ offen und $p ∈ U$. Eine Funktion $f: U → $ ist
bei $p$ komplex differenzierbar\index{komplex differenzierbar} mit Ableitung
$δ ∈ $, wenn
\[
\lim_{h → 0} \frac{f(p+h) - f(p)}{h} = δ
\]
ist.
\end{definition}
\begin{bemerkung}
Genau wie in der Vorlesung „Analysis“ beweist man: komplex differenzierbare
Funktionen sind stetig. Es gelten die Summenregel, Produktregel,
Quotientenregel, Kettenregel, …
\end{bemerkung}
\begin{definition}[Holomorphie an einem Punkt]
Es sei $U ⊂ $ offen und $p ∈ U$. Eine Funktion $f: U → $ heißt
„holomorph\index{holomorph} bei $p$“, wenn es eine offene Umgebung $p ∈ V ⊂ U$
gibt, sodass $f$ bei jedem Punkt aus $V$ komplex differenzierbar ist. Die
Menge der Funktionen, die bei $p$ holomorph sind, wird mit $𝒪_p$ bezeichnet.
\end{definition}
\begin{definition}[Holomorphie auf einer offenen Menge]
Es sei $U ⊂ $ offen und $p ∈ U$. Eine Funktion $f: U → $ heißt „holomorph
auf $U$“, wenn $f$ bei jedem Punkt aus $U$ komplex differenzierbar ist. In
diesem Fall wird die Ableitungsfunktion mit $f' : U → $ bezeichnet. Die
Menge der Funktionen, die auf $U$ holomorph sind, wird mit $𝒪(U)$
bezeichnet.
\end{definition}
\section{Komplex Differenzierbarkeit und Differenzierbarkeit}
Definitionen~\ref{def:2-1-1} und \ref{def:2-1-3} sehen völlig gleich aus. Das
wirft die Frage auf: Ist komplexe Differenzierbarkeit wirklich ein neuer
Begriff? Gibt es einen Unterschied zum Begriff der Differenzierbarkeit von
Abbildungen $ℝ² → ℝ²$, den wir schon lange aus der Vorlesung „Analysis“ kennen?
\begin{erinnerung}[Differenzierbarkeit von Abbildungen $ℝ² → ℝ²$]
Es sei $U ⊂ ℝ²$ offen und $p ∈ U$. Eine Abbildung $f: U → ℝ²$ heißt bei $p$
differenzierbar mit Ableitungsmatrix $A ∈ \text{Mat}(2 2, )$, wenn
\[
\lim_{h → 0} \frac{|f(p+h) - f(p) - A · h|}{|h|} = 0.
\]
Dabei bedeutet der Limes: für alle Nullfolgen $(h_n)$ aus $ℝ²$ ist
\[
\lim_{n → ∞} \frac{|f(p+h_n) - f(p) - A · h_n|}{|h_n|} = 0.
\]
Falls $f$ bei $p$ differenzierbar ist, dann wissen wir auch genau, wie die
Ableitungsmatrix $A$ aussieht. Dazu schreiben wir die Funktion $f$ zuerst in
Komponenten,
\[
f(x,y) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix}.
\]
Dann ist $A$ die Matrix der partiellen Ableitungen,
\[
A = \begin{pmatrix} \frac{}{∂ x}f_1(p) & \frac{}{∂ y} f_1(p) \\ \frac{}{∂ x} f_2(p) & \frac{}{∂ y} f_2(p) \end{pmatrix}.
\]
\end{erinnerung}
\subsubsection{Proberechnungen}
Um den Unterschied von reeller und komplexer Differenzierbarkeit zu verstehen,
machen wir in diesem Abschnitt eine große Proberechnung. Es sei $U ⊂ $ offen
und $p ∈ U$. Weiter sei $f: U → $ bei $p$ komplex differenzierbar mit
Ableitung $δ = d_1 + i · d_2$. Es gilt also
\[
\lim_{h → 0} \frac{f(p+h) - f(p)}{h} = δ = d_1 + i · d_2.
\]
Dabei bedeutet der Limes: für alle Nullfolgen $(h_n)$ aus $$ ist
\begin{equation}\label{eq:2-2-1-1}
\lim_{n → ∞} \frac{f(p+h_n) - f(p)}{h_n} = δ = d_1 + i · d_2.
\end{equation}
Um das jetzt besser zu verstehen, schreiben wir $p$ und $f$ zuerst einmal in
Komponenten,
\[
p = p_1 + i·p_2
\quad\text{und}\quad
f(x + iy) = f_1(x,y) + i · f_2(x,y).
\]
\paragraph{Spezialfall: $h_n$ ist eine rein reelle Folge}
Die Gleichung~\eqref{eq:2-2-1-1} gilt für alle Nullfolgen. Betrachten wir also
zuerst den Fall, wo $h_n$ eine Folge von reellen Zahlen ist. Dann ist
\begin{align*}
d_1 + i·d_2 &= \frac{f(p+h_n) - f(p)}{h_n}\\
& = \lim_{n → ∞} \frac{f_1(p_1 + h_n, p_2) + i·f_2(p_1 + h_n, p_2) - f_1(p_1, p_2) - i·f_2(p_1, p_2)}{h_n} \\
& = \frac{}{∂ x}f_1(p_1, p_2) + i \frac{}{∂ x} f_2(p_1, p_2).
\end{align*}
Wir sehen:
\begin{equation}\label{eq:2-2-1-2}
\frac{}{∂ x} f_1(p) = d_1
\quad\text{und}\quad
\frac{}{∂ x} f_2(p) = d_2.
\end{equation}
\paragraph{Spezialfall: $h_n$ ist eine rein imaginäre Folge}
Die Gleichung~\eqref{eq:2-2-1-1} gilt für alle Nullfolgen. Betrachten wir also
als nächstes Folgen der Form $i·h_n$, wo $h_n$ eine Folge von reellen Zahlen
ist. Dann ist
\begin{align*}
d_1 + i·d_2 &= \frac{f(p+h_n) - f(p)}{i·h_n}\\
& = \lim_{n → ∞} \frac{f_1(p_1, p_2 + h_n) + i·f_2(p_1, p_2 + h_n) - f_1(p_1, p_2) - i·f_2(p_1, p_2)}{i·h_n} \\
& = -i·\lim_{n → ∞} \frac{f_1(p_1, p_2 + h_n) + i·f_2(p_1, p_2 + h_n) - f_1(p_1, p_2) - i·f_2(p_1, p_2)}{h_n} \\
& = -i·\left(\frac{}{∂ y}f_1(p_1, p_2) + i \frac{}{∂ y} f_2(p_1, p_2)\right) \\
& = \frac{}{∂ y} f_2(p_1, p_2)-i·\frac{}{∂ y}f_1(p_1, p_2).
\end{align*}
Wir sehen:
\begin{equation}\label{eq:2-2-1-3}
\frac{}{∂ y} f_2(p) = d_1
\quad\text{und}\quad
\frac{}{∂ y} f_1(p) = -d_2.
\end{equation}
Wir beenden die Proberechnungen hier. Als Konsequenz halten wir Folgendes fest.
\begin{prop}[Cauchy-Riemann Gleichungen]
Es sei $U ⊂ $ offen und $p ∈ U$. Weiter sei $f: U → $ bei $p$ komplex
differenzierbar. Schreibe $f$ in Komponenten, $f$ in Komponenten, $f = f_1 +
i · f_2$, mit $f_1, f_2 : U → $. Dann ist
\begin{equation}\label{eq:2-2-2-1}
\frac{}{∂ x} f_1(p) = \frac{}{∂ y} f_2(p)
\quad\text{und}\quad
\frac{}{∂ y} f_1(p) = -\frac{}{∂ x} f_2(p).
\end{equation}
\end{prop}
\begin{proof}
Vergleiche~\eqref{eq:2-2-1-2} und \eqref{eq:2-2-1-3}.
\end{proof}
\begin{notation}[Cauchy-Riemann Gleichungen]
Man nennt das Gleichungssystem~\eqref{eq:2-2-2-1} die „Cauchy-Riemann
partiellen Differenzialgleichungen“\index{Cauchy-Riemann Gleichungen}.
\end{notation}
% !TEX root = LineareAlgebra2