56 lines
11 KiB
Plaintext
56 lines
11 KiB
Plaintext
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QWenn Sie als Hausaufgabe nachrechnen sollen, dass ein gegebenes Polynom \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q irreduzibel ist, dann werden wir den Output von „isIrreducible(\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q)“ aber nicht akzeptieren.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QZwar pendelten um 1704 jährlich mehr als 300 Schiffe zwischen England und den „West Indies“, es kam aber durch Fehlnavigation regelmäßig zu verheerenden Katastrophen.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QEin großer Teil der Vorlesung „Lineare Algebra II“ befasst sich mit diesem Thema: Jordan-Formen, Basiswechsel, Determinanten, Invarianten, Eigenräume, …\\E$"}
|
||
{"rule":"DOPPELTE_SATZZEICHEN","sentence":"^\\Q… und wie ging die Geschichte aus?.\\E$"}
|
||
{"rule":"DOPPELTE_SATZZEICHEN","sentence":"^\\QWie geht es weiter?.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Assoziativität] Für alle Elemente \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Neutrales Element] Es gibt genau ein Element \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Inverse Elemente] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gibt es genau ein Element \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Abgeschlossenheit unter der Gruppenverknüpfung] Für alle Elemente \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist auch \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Abgeschlossenheit unter Inversenbildung] Für alle Elemente \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist auch \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q in \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Gruppenstruktur von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q] Es ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q eine Abelsche Gruppe.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Assoziativität der Multiplikation] Für alle Elemente \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Neutrales Element der Multiplikation] Es gibt genau ein Element \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QVorlesung 2 Ein Ring \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q heißt Schiefkörper, wenn \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q nicht der Nullring ist und alle Elemente außer der \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q invertierbar sind, wenn also \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt.\\E$"}
|
||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDie Menge \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist ein Unterring, aber kein Unterkörper von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Minimaler Grad] Zuerst betrachten wir nur solche Polynome, deren Grad minimal ist unter allen nicht-konstanten Polynomen, die \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q als Nullstelle haben.\\E$"}
|
||
{"rule":"DE_SENTENCE_WHITESPACE","sentence":"^\\QVorlesung 3 3-1 und 3-2.\\E$"}
|
||
{"rule":"KOMMA_ZWISCHEN_HAUPT_UND_NEBENSATZ","sentence":"^\\QDann bildet die Menge \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist algebraisch über \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q einen Unterkörper von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, genannt der algebraische Abschluss von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q im Oberkörper \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q 3-6\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QErklärung: die Definition der Radikalerweiterung sagt also, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q die \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-te Wurzel eines Elements aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q die \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-te Wurzel eines Elements aus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, etc. Nach Korollar \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q können wir schreiben \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QAus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q folgt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QEs sei \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ein kommutativer Ring und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q seien Elemente.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QIn der Literatur findet man statt „faktoriell“ manchmal auch die Adjektive ZPE (= Zerlegung in Primelemente ist Eindeutig) oder UFD (= Unique Factorization Domain).\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QIn der Literatur findet man statt „faktoriell“ manchmal auch die Adjektive ZPE (= Zerlegung in Primelemente ist Eindeutig) oder UFD (= Unique Factorization Domain).\\E$"}
|
||
{"rule":"DE_SENTENCE_WHITESPACE","sentence":"^\\QVorlesung 6\\E$"}
|
||
{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\QggT und kgV.\\E$"}
|
||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QEs ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q genau dann, wenn für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QWenn Sie bei mir die Vorlesung „Lineare Algebra“ gehört haben, dann wird Ihnen die folgende Definition sehr vertraut vorkommen.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Anwenden eines Ringhomomorphismus auf die Koeffizienten:] Ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ein Ringhomomorphismus, dann ist auch \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ein Ringmorphismus.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QSetze \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q [Substitutionsmorphismus] Es sei ein Element \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gegeben.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Anwenden eines Ringhomomorphismus auf die Koeffizienten] Ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ein Ringhomomorphismus, dann ist auch \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ein Ringmorphismus.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QIch verzichte deshalb im Folgenden sehr oft auf Beweise und behaupte, dass „alles genau so geht, wie in der Linearen Algebra“.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QStellen Sie sicher, dass sie sich noch ausreichend gut an die Vorlesung „Lineare Algebra“ erinnern.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QGenau wie die Quotientenvektorräume der Linearen Algebra sind Restklassenringe durch folgende universelle Eigenschaft definiert.\\E$"}
|
||
{"rule":"DE_SUBJECT_VERB_AGREEMENT","sentence":"^\\QEin Restklassenring oder Quotientenring ist ein kommutativer Ring \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q mit Eins zusammen mit einem Ringmorphismus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist und so, dass die folgende universelle Eigenschaft gilt: ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ein weiterer Ringmorphismus mit \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, dann gibt es genau einen Ringmorphismus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass das folgende Diagramm kommutiert, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QErinnerung an die Lineare Algebra: Quotient nach Äquivalenzrelation = \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q = Menge der Äquivalenzklassen\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QDer folgende Satz folgt wie in der Linearen Algebra aus der universellen Eigenschaft.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\Q[Wie sieht der Kern von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q aus?] Ein Polynom \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist offenbar genau dann im von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Kern, wenn \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist.\\E$"}
|
||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QFür den Ring \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q haben wir die Antwort in der Vorlesung „Lineare Algebra“ kennengelernt.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QDer Chinesische Restsatz.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QDer Chinesische Restsatz ist langweilig, darf aber in keiner Vorlesung fehlen und kommt auch in den allermeisten Klausuren und Prüfungen vor.\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QWenn \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q sind, dann ist diese notwendige Bedingung automatisch erfüllt, und der Chinesische Restsatz sagt, dass das Gleichungssystem dann auch lösbar ist.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QDann ist der kanonische Ringhomomorphismus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\QAdd.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\Qund Mult.\\E$"}
|
||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDer Körper der algebraischen Zahlen, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist ein algebraischer Abschluss \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"PLURAL_APOSTROPH","sentence":"^\\QIn einem normalen Jahr würde mithilfe von Zorn's Lemma zeigen, dass diese naive Idee tatsächlich trägt.\\E$"}
|
||
{"rule":"PLURAL_APOSTROPH","sentence":"^\\QZorn's Lemma = eine Variante des Auswahlaxioms\\E$"}
|
||
{"rule":"DOPPELTE_SATZZEICHEN","sentence":"^\\QWorum geht es in diesem Teil der Vorlesung?.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QEin wichtiges Problem der Algebra(klausur/prüfung) ist es, zu einem gegebenen Körper \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und zu einem gegebenen Polynom \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q den Zerfällungskörper zu bestimmen.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QWir erhalten also einen Gruppenmorphismus \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-isomorphismen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\QPermutationen der Menge \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QWenn alles 100%ig korrekt sein sollte, müsste ich an dieser könnte den Polynomring ausführlich mithilfe einer universellen Eigenschaft definieren.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QWenn alles 100%ig korrekt sein sollte, müsste ich an dieser Stelle den Polynomring ausführlich mithilfe einer universellen Eigenschaft definieren.\\E$"}
|
||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QDie Sätze klären auch noch einmal, warum SAGE eckige Klammern verwendet und den Körper „\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q adjungiert \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q“ mit QQ[sqrt(5)] bezeichnet.\\E$"}
|
||
{"rule":"KOMMA_ZWISCHEN_HAUPT_UND_NEBENSATZ","sentence":"^\\QFür beliebige Körpererweiterungen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und beliebige Teilmengen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist die Äquivalenz \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q sind algebraisch ganz falsch.\\E$"}
|
||
{"rule":"DOPPELTES_AUSRUFEZEICHEN","sentence":"^\\QFalsch!!\\E$"}
|
||
{"rule":"DE_CASE","sentence":"^\\QDann ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Ist mir zu langweilig.\\E$"}
|